Peptide Hydrogen-bonded Organic Frameworks

Thangavel Vijayakanth,*a Sneha Dasgupta,^b Pragati Ganatra,^c Sigal Rencus-Lazar,^a Aamod V. Desai,^d Shyamapada Nandi, e Rahul Jain, b Santu Bera, f Andy I. Nguyen, *c Ehud Gazit, *a,g Rajkumar Misra*b

⁶ Department of Chemistry, Ashoka University, Sonipat, Venore Haryana 131029, India.
⁹ Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel.
*Corresponding authors' email: <u>vijayakantht@mail.tau.ac.il; andyn@uic.edu; ehudg@post.tau.ac.il; rkmisra@niper.ac.in</u>

^a Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv–6997801, Israel.

^b Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.

 ^c Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States.
 ^d School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom.
 ^e Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, 600127, Chennai, India.

Table S1. Summary of properties and functionality in peptide-based hydrogen-bonded porous frameworks (P-HPFs)

P-HPFs name	No of hydrophobic residues	No of hydrophilic residues	Percentage of hydrophobic
VA	2	0	100
AV	2	0	100
AI	2	0	100
IA	2	0	10
VV	2	0	100
VI	2	0	100
IV	2	0	100
LS	1	1	50
FF	2	0	100
FG	2	0	100
FL	2	0	100
FW	2	0	100
LL	2	0	100
LF	2	0	100
IL	2	0	100
WG	2	0	100
Abu-Abu	2	0	100
Abu-Nva	2	0	100
Abu-Val	2	0	100
Abu-Leu	2	0	100
Abu-lle	2	0	100
Nva-Abu	2	0	100

Nva-Nva	2	0	100
Nva-Val	2	0	100
Nva-Leu	2	0	100
Nva-lle	2	0	100
HYF	2	0	100
DYF	2	1	75
YFD	2	1	75
F- ^D Nva-F	3	0	100
SP1	8	1	88.89
SP2	4	0	100
SP3	14	13	51.85
SP4	12	14	46.15
SP5	14	12	53.85
SP6	13	13	50
SP7	11	15	42.31
SP8	10	6	62.5
F1	7	4	63.63
F2	5	5	50
F3	8	4	66.67
F4	15	0	100

Figure S1. Unit-cell packing diagram of FF showing the formation of molecular rings by six FF molecules and its donor-acceptor interactions (a) and its pi-pi stacking modes (b). The hydrophilic channels formed by six FF molecules are shown and the solvent water molecules are removed for structural clarity.

Figure S2. Unit-cell packing diagram of AV displaying a porous framework mediated via head-to-tail hydrogen-bonded interactions between ammonium (NH₃⁺) and carboxylate (COO⁻) residues.

Figure S3. Unit-cell packing diagram of Abu-Abu displaying a porous framework mediated via head-to-tail hydrogen-bonded interactions between ammonium (NH_3^+) and carboxylate (COO⁻) residues.

Figure S4. Higher-order crystal packing structure of HYF displaying hydrogen-bonded porous assemblies. The highlighted part shows the hydrogen-bonded porous framework channels formed by six HYF molecules and the solvent water molecules are removed for structural clarity.

Figure S5. Higher-order crystal structure of $F^{-D}Nva$ -F displaying a porous framework mediated via head-to-tail hydrogen-bonded interactions between ammonium (NH₃⁺) and carboxylate (COO⁻) residues. The aromatic phenyl rings are highlighted in the space-filling model.

Figure S6. Higher-order crystal packing diagram of PP4 displaying hydrogen-bonded porous framework and the solvent-accessible channels (viewed along the b-axis). The solvent ethanol molecules are removed for structural clarity.

Figure S7. Views of the π - π stacking and inter-chain H-bonding contributing to the structure of **UIC-1** (SP1).