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1. THE MEANING OF QUANTUM AND ELECTROCHEMICAL
CAPACITANCES

The meaning of the quantum capacitance (also referred as chemical ca-
pacitance [1]) is related to the potential energy difference −eV associated
with D (HOMO, Highest Occupied Molecular Orbital) and A (LUMO,
Lowest Unoccupied Molecular Orbital) chemical energy states within
an electrodynamics of transmittance between these states, which can
occur inter or intra molecules. Accordingly, these corresponding −eV
differences are inversely dependent on the density-of-state (dn/dE), such
as that −eV = e2/Cq = (dE/dn), where (dE/dn) is the amount of energy
per amount of quantum channel modes within the D − A states (of a
molecule or in between molecules). Hence, the quantum modes of elec-
tron transmittance are formed as a result of the formation of the D − A
structures. The latter analysis directly leads to µ = (dE/dn) = −eV,
where µ = (dE/dn) = ∆EHL/2 is identified as the electronic chemical
potential [2, 3] of the D or A state and is computed as the halfway energy
difference ∆EHL between EH (HOMO) and EL (LUMO) energy states,
being the free energy per number of elementary charge e required for ET
or electron transport to proceed through a quantum channel of length L
established between the electronically coupled D and A states. This free
energy per electron directly correlates with the conductance quantum, as
a key presumption of the quantum rate theory.

Accordingly, the general definition of quantum capacitance depends on
identifying the quantum levels and states existing between two different
reservoirs (note that D and A states defined in the main text can be
considered particular types of electron reservoirs) that are contacted
(chemically or physically). Taking the individual electronic structure of
D and A separately without establishing, in principle, any type of ET
mechanism or electrodynamics occurring between these reservoirs, hence
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the quantum capacitance is simply defined as

1
Cq

=
1
e2

[
1

(dn/dE)D
+

1
(dn/dE)A

]
, (S1)

where (dn/dE)D and (dn/dE)A are the DOS of D and A reservoirs, re-
spectively.

Note that Eq. S1 is general for any molecular scale and hence Cq cannot
be defined for macroscopic entities. For instance, if the general Cq concept
stated in Eq. S1 is applied to the separation of an amount of charge q
over a potential difference V imposed over two macroscopic metallic
plate electrodes, it leads to e2/Cq = [1/DOSl + 1/DOSr], where DOSl
and DOSr are the DOS of the left and right metallic plates, respectively.
Because both DOSl and DOSr are very high for macroscopic metallic-like
reservoirs with very high density-of-states, the energy contribution as-
sociated with the occupancy of the states, computed as e2/Cq, tends to
be null, according to Eq. S1, where both (dn/dE)l and (dn/dE)r will be
very high and thus leading to e2/Cq ∼ 0. In other words, macroscopic
metallic plates do not contribute with any additional (chemical or quan-
tum) energy contribution besides that associated with the electrostatic
coulombic spatial separation of charges owing to the imposed electric
potential energy, which is not computed in Eq. S1.

Let us now analyze a particular situation of Cq, as stated in Eq. S1, in
which the left plate of a capacitor is a metallic probe whereas the right is
formed by an ensemble of molecules in contact with the left macroscopic
metallic contact. This particular junction setting resembles the molecular
film discussed in the main text where D states of the molecules are asso-
ciated with oxidation whereas A states to reduction, being this situation
solely a particular electrochemical setting of Eq. S1. In this case, the
analysis will lead to e2/Cq = [1/ (dn/dE)l + 1/DOSe] in which (dn/dE)l
is the density of redox states of the interface in e2/Cq = [1/ (dn/dE)l +
1/DOSe] whereas DOSe is the DOS of the electrode, which, as noted above,
does not contribute to e2/Cq because it is too high and 1/DOSe ∼ 0, thus
leading to Cq = e2 (dn/dE)l for this type of electrochemical interface and
junction setting of Eq. S1.

Therefore, in the presence of an electrolyte and for a molecular film
attached to an electrode (be it redox-active or not) there will be the pos-
sibility of a quantum contribution to the capacitance of the interface
besides the still not computed (in Eq. S1) electrostatic contribution. The
analysis of both (electrostatic and quantum) contributions requires es-
tablishing the concept of electrochemical capacitance Cµ, which brings a
well-known (commonly the unique considered) additional energy con-
tribution (electrostatic) besides that associated with molecular chemical
states individually coupled to an electrode (and accessible by a time-
dependent perturbation of the electrode). In other words, Cµ computes
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the addition classical coulombic capacitive contribution besides that of
quantum capacitance.

The combination of these two contributions gives rise to the concept of
electrochemical capacitance Cµ, which is more appropriate for dealing
with electrochemical interfaces comprising quantum molecular moieties
attached to an electrode embedded into an electrolytic environment. The
contact of a chemically modified electrode with an electrolyte allows the
investigation of the electronic structure of individual molecular moieties
in the presence of an electrolyte medium, responsible for a key electric-
field screening phenomenon [4].

Therefore, the concept of electrochemical capacitance Cµ is an equiva-
lent capacitance that is computed as a result of a series combination of
coulombic Ce spatial separation of charge (also referred to as polarization)
and quantum Cq capacitive states, as it was defined in Eq. S1, such as that

1
Cµ

=
1
Ce

+
1

Cq
. (S2)

Note that in the classical analysis of two capacitors arranged in series,
in which only the coulombic charge separation operates, there is an
equivalent amount of charges distributed between the two capacitors
and a different electric potential in each of them. However, given the
atomic and molecular scales of electrochemical capacitors, one of the
capacitances has a different physical origin (unrelated to the Coulomb
or Gauss law); however, they can have the same charge and potential
difference in the presence of an appropriate electrolyte environment able
of screening the charge with consequences that leads to a degeneracy ge
of the electric potential energy, as discussed in the main text.

Worthy to note is that the contribution of Ce must be taken into account
for describing the properties of the electrolyte structure within the contri-
butions of the solvent and counter-ions to the quantum electrodynamics
associated with Cq. As discussed in the main text, in the presence of an
appropriate electrolyte medium, there can be a degeneracy of electrostatic
e2/Ce and quantum e2/Cq energy states computed as ge

1 and the total
electrochemical energy of the interface can be written in terms of Cq such
as Eµ = ge

(
e2/Cq

)
.

Accordingly, adding the electrolyte contribution (taken as a degeneracy
of ge) to the dynamics of the quantum rate, the resulting rate is computed
as [1]

1Recall, from the main text, that this ge term refers to an energy degeneracy owing to
Ce ∼ Cq which is associated with the electric field screening imposed by the electrolyte.
It is an additional degeneracy besides the spin degeneracy of the electron gs. More
details on the meaning and origin of ge as an additional energy degeneracy besides gs
are discussed in the main text.
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k =
G
Cµ

= G0

N

∑
n=1

Tn (µ)

(
1
Ce

+
1

Cq

)
= gsge

e2

hCq

N

∑
n=1

Tn (µ) , (S3)

and Eq. S3 is a key first-principle equation that permits us to understand
ET and electron transport in its multitude of situations, including long-
range electron transport in respiratory chains, as discussed in the main
text.

2. THE STATISTICAL MECHANICS OF THE QUANTUM RATE
The zero-temperature approximation of the quantum rate theory is sum-
marized in Eq. S3, corresponding to Eq. 2 of the main text. The considera-
tion of the statistical mechanics and thermal dependence within a finite
temperature analysis of Eq. S3 can be conducted simply by rewritten
Eq. S3 in the following form

k =
G0

Cµ

N

∑
n=1

Tn (µ) = gs
e2

hCµ

N

∑
n=1

Tn (µ) = gs
Eµ

h

N

∑
n=1

Tn (µ) , (S4)

by noting the meaning of Cµ given by Eq. S2 and G0 = gse2/h. The
total electrochemical energy of the system is now recognized as Eµ =

e2/Cµ, which is not consistent with the thermodynamics owing to it
being formulated at the zero-temperature limit. In other words, the
temperature dependence required for a room temperature analysis of the
electrodynamics involved with the total electrochemical energy is not
contained in Eq. S3.

The thermodynamics that corresponds to the thermal dependence of
Eµ = e2/Cµ can be quantified using statistical mechanics [1]. Partic-
ularly, using the grand canonical ensemble presumption [1], it can be
demonstrated that Eµ = e2/Cµ = (kBT/N) [ f (1 − f )]−1, where f =

(1 + exp (E/kBT))−1 is the Fermi-Dirac distribution function, kB is the
Boltzmann constant, T is the absolute temperature and E = µ − EF

2.
Therefore, within statistical mechanics considerations, Eq. S4 (or equiva-
lently Eq. S3) can be now rewritten as

k = ge
G
Cq

= geG0

(
kBT
e2N

)
[ f (1 − f )]−1

N

∑
n=1

Tn (µ) . (S5)

which is equivalent to Eq. 9 of the main text if the meaning of ge is taken
into account.

2Note that if there is the consideration of an electrode structure over which there is a
molecular system of interest to be studied, it is required a referential energy level. The
Fermi level EF of the junctions is generally taken as the reference level of energy.
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3. AMBIPOLAR ELECTRIC CURRENT
Let us now consider an ambipolar diode junction operating at a finite
temperature T within an equilibrium potential of EF/e, where EF corre-
sponds to the Fermi level of the diode. Accordingly, by definition, at the
equilibrium potential EF/e there is no net current flowing through the
diode. However, there is an equilibrium dynamical electric current i0,
which is ambipolar, hence consisting of electron and hole charge carriers,
flowing dynamically in the diode.

By applying a very small bias potential V′ perturbation over the equi-
librium potential EF/e, that is V′ = V − EF/e, it is possible to derive an
expression of the conductance for a single charge (electron or hole) trans-
mission through this ambipolar diode. The expression of the conductance
is obtained from the i − V curve of the diode which is, considering the i0
ambipolar electric current3, defined as

i = i0

(
exp

[
α

e
kBT

V′
]
− exp

[
(1 − α)

e
kBT

V′
])

, (S6)

which is identical to the Butler-Volmer equation [5, 6], where α corre-
sponds to the transfer coefficient of the diode. Hence, the expression of
the conductance is calculated as the derivative di/dV of Eq. S6, which
leads, to a transfer coefficient of 1/24, to the conductance quantum de-
fined in terms of i0 [7]

G0 =
1

Rq
=

e
2kBT

i0, (S7)

obtained at the Fermi level of the diode junction, where the term kBT/e is
a constant referred to as the thermal voltage and Rq numerically complies
with 12.9 kΩ5, as demonstrated experimentally in different situation,
including the electrochemistry of redox-active molecular junctions [7].

According to the quantum rate theory, the rate ν of charge carriers
following in this diode junction at a finite T is defined as ν = G/Cq, where
Cq must now be defined in terms of the general definition of capacitance
that is given as 1/C = dV/dq, in which dq = −edn. Noting that dµ =
−edV, according to the definition of quantum or chemical capacitance
provided in section 1, it can be straightforwardly demonstrated that
dµ/dn = e2/Cq defines the chemical potential difference responsible
for the ambivalent equilibrium flowing of charge that gives rise to i0
of the diode junction, which for a single charge state dn = 1 provides

3Observe that this electric current concept applies to both molecular and biological
films studied and discussed in the main text

4By adopting the transfer coefficient as 1/2 (α = 1/2), it is explicitly taken into
account both type of charge carriers (electrons and holes) flowing in the junction.

5This is a constant value defined by the expression h/gse2, where gs = 2 corresponds
to the spin degeneracy of the electron energy state.
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the capacitance of a single charge dynamics in a single-channel mode
of operation, which leads to ∆µ = e2/Cq for a single quantum channel
charging mode of operation of this diode.

Alternatively, note that dµ = dE/dn also implies a chemical potential
difference between D and A states of a D − A system, corresponding
to the difference of energy −eV between D and A states. According to,
for the diode junction or the i0 flowing in a D − A system, it can also be
demonstrated that

Cq = e2
(

dn
dE

)
, (S8)

and hence the quantum or chemical capacitance [1] Cq, for these situ-
ations, is directly proportional to the density-of-state (dn/dE) [1, 8, 9].
The simplest way of taking the temperature dependence of Cq defined
in Eq. S8 is by considering a Fermi-Dirac occupancy, such as that f =

n/N = (1 + exp (E/kBT))−1, from which dn = Nd f , where N is the
total number of states. Accordingly, Eq. S8 turns into

Cq = Ne2
(

d f
dE

)
=

(
e2N
kBT

)
[ f (1 − f )] , (S9)

by noting that (d f /dE) = (1/kBT) [ f (1 − f )]. At the equilibrium state
of energy, i.e., at the Fermi level, f = 1/2 and Eq. S9, for a single charge
mode of operation for which N = 1, turns simply into

Cq =
e2

4kBT
. (S10)

A thermally dependent ν = G0/Cq for a single charge mode of opera-
tion can be now defined as the ratio between G0 stated in Eq. S7 and Cq
stated in Eq. S9, such as that

ν = G0/Cq = 2
(

i0
e

)
, (S11)

which is identical to the result obtained in Eq. 11 or Eq. 12 of the main
text. The number 2 in Eq. S11 comes from the fact that although the
degeneracy of i0 was considered in the definition of G0 provided by
Eq. S7, the spin degeneracy of the electron was not (and required as
verified experimentally [5]). If the spin degeneracy were considered in
the definition of G0 provided by Eq. S7, Eq. S7 would be formulated as
(e/4kBT)i0 and hence the rate ν would be stated simply as i0/e, leading
to the same result indicated in the main text (see Eq. 12).
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