Electronic supplementary information

Synthetic progress of organic thermally activated delayed fluorescence emitters via C–H activation and functionalization

Fan Ni,*a Yipan Huang, Longzhen Qiu,*a Chuluo Yang*b

^a National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China. Email: nfope@hfut.edu.cn, lzhqiu@hfut.edu.cn

^b Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China. E-mail: <u>clyang@szu.edu.cn</u>

Abbreviations	Full meaning
TADF	Thermally activated delayed fluorescence
RISC	Reverse intersystem crossing
T ₁	Lowest excited triplet state
S_1	Lowest singlet state
S ₀	Ground state
k _{RISC}	Rate of reverse intersystem crossing process
ТТА	Triplet-triplet annihilation
D-A	Donor-acceptor
$\Delta E_{ m ST}$	Energy gap between S ₁ and T ₁ states
SOC	Spin-orbit coupling
k_r^S	Radiative rate of S ₁ state
$\langle S \hat{H}_{SOC} T\rangle$	SOC matrix element
k _B	Boltzmann constant
Т	Temperature or triplet state
$E_{\rm S}$	Energy level of S ₁ state
E_{T}	Energy level of T ₁ state
Ε	Orbital energy
K	Electron repulsion energy
J	Exchange energy
номо	Highest occupied molecular orbital

Table S1 List of abbreviations of general terms used in this review

LUMO	Lowest unoccupied molecular orbital
FOMs	Frontier molecular orbitals
MR-TADF	Multiple-resonance thermally activated delayed fluorescence
FWHM	Full-width at half-maximum
MLCT	Metal-to-ligand charge transfer
LMCT	Ligand-to-metal charge transfer
LLCT	Ligand-to-ligand charge transfer
MADF	Metal-assisted delayed fluorescence
PF	Prompt fluorescence
DF	Delayed fluorescence
k _{ISC}	Rate of intersystem crossing process
k_r^T	Radiative rate of T ₁ state
СТ	Charge transfer
LE	Locally excited
Phos	Phosphorescence
k_{nr}^{S}	Non-radiative rate of S ₁ state
k _{CQ}	Rate of concentration quenching of T_1 state
k _{IC}	Rate of internal conversion
<i>k</i> _{RIC}	Rate of reverse internal conversion
HFC	Hyperfine coupling
OLEDs	Organic light-emitting diodes
EQE _{max}	Maximum external quantum efficiency

ECL	Electrogenerated chemiluminescence
PDT	Photodynamic therapy
TTA-UC	Triplet-triplet-annihilation upconversion
3D	Three-dimensional
SN _{Ar}	Aromatic nucleophilic substitution
SE _{Ar}	Aromatic electrophilic substitution
PLQY	Photoluminescence quantum yield
DGs	Directing groups
LG	Leaving group
Μ	Metal
R. T.	Room temperature
AIDF	Aggregation-induced delayed fluorescence
$oldsymbol{\Theta}_{\prime\prime}$	Horizontal dipole ratio
RTP	Room temperature phosphorescence
EWG	Electron-withdrawing group
MCL	Mechanochromic luminescence
CD	Circular dichroism
CPL	Circularly polarized luminescence
CPEL	Circularly polarized electroluminescence
CPPL	Circularly polarized photoluminescence
$g_{ m EL}$	Circularly polarized electroluminescent dissymmetry factor
CP-TADF	Circularly polarized thermally activated delayed fluorescence

	Circularly polarized multiple-resonance				
CP-MR-TADF	thermally activated delayed fluorescence				
EL	Electroluminescence				
PL	Photoluminescence				
MCz	1-Methylcarbazole				
$ heta_{\mathrm{DA}}$	Torsion angle between donor and acceptor				
$ au_{ m d}$	Lifetime of delayed fluorescence				
TSCT	Through-space charge transfer				
SRCT	Short-range charge transfer				
LRCT	Long-range charge transfer				
DFT	Density functional theory				
E _{HOMO}	HOMO energy level				
TSF	TADF-sensitized fluorescence				
TST	TADF-sensitized TADF				

Abbreviations	Full meaning	Abbreviations	Full meaning	
Pd(OAc) ₂ Palladium(II) acetate		Dd(DDb.) Cl	Bis(triphenylphosphine)palla	
Fu(OAC) ₂			dium(II) dichloride	
AgOAc	Silver(I) acetate	ICz	Indolo[3,2,1 <i>-jk</i>]carbazole	
NBS	N Bromosuccinimido	ран	Polycyclic aromatic	
1103	14-Di Oniosuccininiuc	TAI	hydrocarbons	
			12b-Methyl-5,12b-	
PTSA	<i>p</i> -Toluenesulfonic acid	MeIAc	dihydroindeno[1,2,3-	
			<i>kl</i>]acridine	
o-DCB	1,2-Dichlorobenzene	DMSO	Dimethyl sulfoxide	
			1,1'-	
RuCl ₃	Ruthenium(III) chloride	dppf	Bis(diphenylphosphino)ferro	
			cene	
DBU	1.8-Diazabicyclo[5.4.0]undec-7-ene	Pd(dba)	Bis(dibenzylideneacetone)pal	
	i,o Diizubieyeto[offito]anaee / ene	Tu(uou)2	ladium(0)	
DME	1,2-Dimethoxyethane	P(o-tolyl) ₃	Tri(o-tolyl)phosphine	
K ₂ CO ₃	Potassium(II) carbonate	CsF	Cesium(I) fluoride	
MeI	Methyl iodide	CH ₃ CN	Acetonitrile	
	Rhodium(I)	CHaCla	Dichloromethane	
MILLI 1 113/3/1	tris(triphenylphosphine) chloride			
MnO ₂	Manganese(IV) dioxide	CF ₃ COOH	Trifluoroacetic acid	

Table S2 List of abbreviations of reagents and building blocks used in this review

			(1,5-	
Zn(OAc) ₂	Zinc(II) acetate	[Ir(COD)OMe	Cyclooctadiene)(methoxy)iri	
		2	dium(I) dimer	
			4,4'-Di- <i>tert</i> -butyl-2,2'-	
PhCl	Chlorobenzene	dtbpy	bipyridine	
			4,4,5,5-Tetramethyl-2-	
[Ru(<i>p</i> -	Dichloro(<i>p</i> -cymene)ruthenium(II)		(tetramethyl-1,3,2-	
cymene)Cl ₂] ₂	dimer	(BPin) ₂	dioxaborolan-2-yl)-1,3,2-	
			dioxaborolane	
PCy ₃			4,4,5,5-Tetramethyl-1,3,2-	
	Tricyclohexyl phosphine	HBPin	dioxaborolane	
			Carbazolophane,	
NaHCO3	Sodium(I) bicarbonate	Сzр	indolo[2.2]paracyclophane	
DMF	N,N-Dimethylformamide	CuCl	Cuprous(I) chloride	
TfOH	Trifluoromethanesulfonic acid	КОН	Potassium(I) hydroxide	
AgSbF ₆	Silver(I) hexafluoroantimonate	BICOL	Bicarbazolediol	
PivOH	Pivalic acid	VO(OAc) ₂	Vanadium(IV) acetate	
			9,9,9',9'-tetramethyl-9,10-	
DCE	1,2-Dichloroethane	BDMAc	dihydro-9' <i>H</i> -2,10'-biacridine	
Pd(acac) ₂	Palladium(II) acetylacetonate	DCM	Dichloromethane	
NaOAc	Sodium(I) acetate	bpy	o-Phenanthroline	
[Cp*RhCl ₂] ₂	Dichloropentamethylcyclopentadien	[Ru-	Dichlorodi-µ-	

ylrhodium(III) dimer

complex6]2 cł

chlorobis[(1,2,3,6,7,8-*η*-2,7-

dimethyl-2,6-octadiene-1,8-

diyl]diruthenium(IV)

Cu(OAc) ₂	Copper(II) acetate	PhCl	Chlorobenzene
Zn(OTf) ₂	Zinc(II) trifluoromethanesulfonate	СН₃СООН	Acetic acid
AgOTf	Silver(I) trifluoromethanesulfonate	C ₂ Cl ₄	Tetrachloroethene
		20	3,3',6,6'-tetra-tert-butyl-9 <i>H</i> -
Ag ₂ O	Silver(1) oxide	DCz	1,9'-bicarbazole
Na ₂ HPO ₄	Sodium(I) dihydrogen phosphate	BBr ₃	Boron tribromide
HFIP	Hexafluoroisopropanol	DIPEA	Diisopropylethylamine
THF	Tetrahydrofuran	Et ₃ N	Triethylamine
			N ¹ ,N ¹ ,N ³ ,N ³ ,N ⁵ ,N ⁵ -
CuI	Cuprous(I) iodide	РА	hexaphenylbenzene-1,3,5-
			triamine
Phen	1,10-Phenanthroline	1,2,4-TCB	1,2,4-Trichlorobenzene
K ₃ PO ₄	Potassium(I) phosphate	BI ₃	Boron triiodide
K ₂ CO ₃	Potassium(I) carbonate	BPh ₃	Triphenylboron
PPh ₃	Triphenylphosphine	dtpy	2,6-Di- <i>tert</i> -butylpyridine
Ag ₂ CO ₃	Silver(I) carbonate	$K_2S_2O_8$	Potassium(I) persulfate
	Tri- <i>tert</i> -butylphosphonium		Tetrabutylammonium
′Bu₃PHBF₄	tetrafluoroborate	ТВАВ	bromide
MCz	1-methyl-9 <i>H</i> -carbazole	ТВНР	<i>tert</i> -Butyl hydroperoxide

DMCz	1,8-dimethyl-9 <i>H</i> -carbazole	'BuPh	tert-Butylbenzene	
TMCz	1,3,6,8-tetramethyl-9 <i>H</i> -carbazole	I_2	Iodine	
Cy ₃ PHBF ₄	Tricyclohexylphosphine	Sa	Solonium(0)	
	tetrafluoroborate	50	Sciemum(0)	
Tol	Toluene	SeO ₂	Selenium(IV) dioxide	
	Methanesulfonato(tricyclohexylphos			
Pd-PCy ₃ -G3	phine)(2'-aMino-1,1'-biphenyl-2-	LDA	Lithium(I) diisopropylamide	
	yl)palladium(II)			
			1,3-Dimethyl-3,4,5,6-	
DMA	N,N-Dimethylacetamide	DMPU	tetrahydro-2(1 <i>H</i>)-	
			pyrimidinone	
IPr·HC1	1,3-bis(2,6-di- <i>i</i> -propylphenyl)	ΤΧΟ	Thioxanthone	
intinei	imidazolium chloride	ino		
Pd.(dba).	Tris(dibenzylideneacetone)dipalladi	TsOH-H ₂ O	<i>p</i> -Toluenesulfonic acid	
1 02(000)3	um(0)	13011120	monohydrate	
XPhos	2-dicyclohexylphosphino-2',4',6'-	кі	Potassium(1) iodide	
A1 1105	triisopropylbiphenyl	KI	i stassium(i) isulue	
P'Bu ₃	Tri- <i>tert</i> -butylphosphine	DCP	Dicumyl peroxide	
TFE	2,2,2-trifluoroethanol	SpA	Spiro-acridan	
Pd(PCv.)-Cl.	Bis(tricyclohexylphosphine)palladiu			
ru(rCy ₃) ₂ Cl ₂	m(II) dichloride			

	$\lambda_{FL}{}^a$	PLQY ^b $ au_{d}^{c} \Delta E_{S}$		$\Delta E_{\rm ST}^{\rm d}$	$\lambda_{\rm EL}{}^{\rm e}$	EQE_{max}^{f}	CIE ^g	D.C
Compound	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	Ket.
oPTC	455	47	57.9	0.02	500	19.9	(0.22, 0.40)	[70]
oPTBC	561	58	4.6	0.007	540	17.8	(0.35, 0.56)	[72]
oAcTBC	509	84	17.4	0.034	512	20.9	(0.23, 0.53)	[73]
oSpTBC	497	93	16.9	0.023	508	26.8	(0.21, 0.49)	[73]
DMAC-BPI	510	96	3.3	0.02	508	24.7	(0.24, 0.49)	[77]
DPAC-BPI	472	11	27	0.15	-	-	-	[78]
DPAC-BPI-CN	525	90	3.0	0.07	531	26.2	(0.24, 0.49)	[78]
TMCzSe	488	86	26.7	0.09	494	25.5	(0.21, 0.46)	[80]
PXZ-ICO	564	17	343	0.14	-	-	-	[85]
5a	573	3	7.2	-	-	-	-	[86]
DMAC-2,3- <i>c</i> -	456		11.4	0.12	47.4	25.4	(0.15, 0.02)	[87]
BTIQO	456	-	11.4	0.12	4/4	25.4	(0.15, 0.23)	
7a	425	26	14.6				-	[88]
7b	450	10	24.7				-	[88]

Table S3 Summary of photophysical properties and device performance of TADF emitters synthesized from directing group-involved C-H bond activation

(a) The peak wavelength (λ_{PL}) of fluorescent spectra, (b) photoluminescence quantum yields (PLQY), (c) lifetime of delayed fluorescence (τ_d) , (d) energy gap (ΔE_{ST}) between singlet (S₁) and triplet (T₁) excited states in solution or film state. (e) The peak wavelength (λ_{EL}) of electroluminescent spectra, (f) maximum external quantum efficiency (EQE_{max}), and (g) Commission Internationale de L'Eclairage (CIE) coordinate of electroluminescence.

	$\lambda_{FL}{}^{a}$	PLQY ^b	${ au_{ m d}}^{ m c}$	$\Delta E_{\rm ST}^{\rm d}$	$\lambda_{\rm EL}^{\rm e}$	$EQE_{max}{}^{\rm f}$	CIE ^g	ÐĆ
Compound	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	Ref.
5CzDPhCF ₃	431	27	0.14	0.23	431	2.0	(0.16, 0.07)	[91]
2	507	89	9.8	0.05	512	18.2	(0.25, 0.53)	[93]
CNCN	480	50	1.74	0.017	468	18.3	(0.15, 0.17)	[96]
CNCF ₃	470	39	0.96	0.025	471	6.6	(0.18, 0.26)	[96]
CNCOA	483	37	2.06	0.015	495	5.6	(0.22, 0.40)	[96]
CNCOAM	472	44	1.76	0.015	457	14.1	(0.15, 0.13)	[96]
2-PXZ-PRB	504	25	58.5	0.34	518	13.6	-	[98]
6-PXZ-PRB	535	38	48.1	0.21	550	15.5	-	[98]
8-PXZ-PRB	522	27	43.4	0.29	530	11.1	-	[98]

Table S4 Summary of photophysical properties and device performance of TADF emitters synthesized from electron-deficient arene C-H bond activation

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max}, and (g) CIE coordinate of electroluminescence.

Compound	$\lambda_{FL}{}^a$	PLQY ^b	$ au_{ m d}{}^{ m c}$	$\Delta E_{\rm ST}^{\rm d}$	$\lambda_{\rm EL}{}^{\rm e}$	$EQE_{max}{}^{\rm f}$	CIE ^g	Dof
Compound	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	Kel.
MCz-TRZ	435	51.3	24.8	0.23	450	13.1	(0.15, 0.11)	[100]
MCz-PM	420	42.1	159.9	0.21	458	7.5	(0.17, 0.18)	[100]
MCz-XT	466	86	11.3	0.04	460	24.0	(0.15, 0.15)	[102]
2MCz-XT	483	91	1.0	0.01	482	32.1	(0.17, 0.30)	[102]
CzBP-1M	-	32.3	94	0.12	-	-	-	[103]
CzBP-2M	-	1.2	63	0.11	-	-	-	[103]
TAZ-1	468	88	8.4	0.15	478	17.7	(0.16, 0.25)	[104]
TAZ-2	476	100	6.6	0.10	479	21.2	(0.16, 0.27)	[104]
QBO	455	83	0.65	0.01	460	20.5	(0.14, 0.12)	[105]
QXT	489	96	0.97	0.02	481	24.9	(0.16, 0.30)	[105]
4	443	86	3.49	0.12	-	13.3	(0.14, 0.16)	[106]
Cz-TRZ2	465	98	3.5	0.07	-	22.0	-	[107]
CF ₃	450	36	0.19/3.1	0.07	-	-	-	[108]
tmCzAZB	451	56	162.4	0.26	464	12.4	(0.14, 0.15)	[109]
TMCzSe	488	85.9	26.7	0.09	497	25.5	(0.21, 0.46)	[80]
MCz-XT	478	98	1.20	0.011	485	11.1	-	[110]
MCz-BS	476	92	1.9	0.11	478	21.6	(0.14, 0.26)	[111]
TMCz-BO	467	98	0.75	0.020	471	20.7	(0.14, 0.28)	[112]

Table S5 Summary of photophysical properties and device performance of carbazole derivatives (from *ortho*-halodiarylamines intramolecular C-H arylation)-based TADF emitters

TMCz-3P	477	76	14.5	0.134	479	20.4	(0.14, 0.26)	[112]
MCz-BSBS	476	100	0.78	0.01	473	20.1	(0.13, 0.20)	[113]
MCz-BOBO	483	93	2.7	0.17	484	25.9	(0.14, 0.33)	[113]
MCz-TXT	490	92	0.75	0.030	497	25.8	(0.21, 0.46)	[114]
MCz-XT	482	95	0.94	0.010	489	25.5	(0.19, 0.42)	[114]
TMCzBCO	520	84	0.99	0.007	532	24.7	(0.33, 0.59)	[115]
TMCz-DMTD	430	57.7	2.6	0.12	448	8.7	(0.16, 0.11)	[116]
1	493	92	6.8	0.02	494	20.9	(0.20, 0.42)	[117]
TMCz-DiKTa	501	76	22	0.08	527	20.2	(0.32, 0.60)	[118]
3TMCz-DiKTa	577	18	3.0	0.01	-	-	-	[118]
TCz-TRZ	457	77	38	0.27	456	10.4	(0.16, 0.14)	[119]
TCz-TRZ(Me)	451	60	51	0.16	448	11.1	(0.17, 0.18)	[119]
TCz-TRZ(Me')	444	80	58	0.12	450	0.7	(0.20, 0.23)	[119]
TCz-TRZ(Me2p)	442	46	39	0.14	447	0.9	(0.20, 0.21)	[119]
TCz-TRZ(Me2o)	435	47	37	0.18	444	2.8	(0.23, 0.29)	[119]
IDAC-MCO	498	81	22	0.09	516	18.0	(0.28, 0.48)	[120]
IDAC-TRZ	533	90	13	0.02	540	20.5	(0.36, 0.55)	[120]
CNCzpPhTRZ	458	65	135.0	0.23	456	7.4	(0.19, 0.18)	[121]
CF ₃ CzpPhTRZ	456	70	158.3	0.22	460	11.6	(0.19, 0.20)	[121]
DCzpTRZtBu	455	41	-	0.115	475	3.2	(0.17, 0.26)	[122]
dtBuCzDCzpTRZtBu	455	37	9.7	0.110	478	4.0	(0.19, 0.30)	[122]
dMeOCzDCzpTRZtBu	490	41	7.7	0.070	515	8.2	(0.24, 0.50)	[122]

B ² TPNF ₂	527	29	2.17	0.00	-	-	-	[123]
B ² CNPyF ₂	488	23	1.84	0.22	-	-	-	[123]
(<i>R</i>)-Czp- <i>t</i> BuCzB	478	98	41.8	0.09	479	32.1	(0.11, 0.21)	[124]
(R)-Czp-POAB	498	96	62.4	0.13	513	28.7	(0.23, 0.65)	[124]
BN-DICz	533	99.4	495.9	0.26	541	31.5	(0.30, 0.58)	[125]

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max},

and (g) CIE coordinate of electroluminescence.

	$\lambda_{FL}{}^{a}$	PLQY ^b	${ au_{ m d}}^{ m c}$	$\Delta E_{ m ST}{}^{ m d}$	$\lambda_{\rm EL}{}^{\rm e}$	EQE_{max}^{f}	CIE ^g		ÐÓ
Compound	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	FWHM ⁿ	Ret.
tBisICz	442	95	12500	0.29	445	15.1	(0.16, 0.05)	22	[143]
tPBisICz	450	91	1740	0.27	452	23.1	(0.15, 0.05)	21	[143]
DiICzMes ₄	451	82	433	0.26	446	16.5	(0.15, 0.11)	-	[144]
10a	502	17	3.6	0.26	-	-	-		[145]
10b	519	45	3.5	0.15	-	-	-		[145]
10c	505	16	1.6	0.28	-	-	-		[145]
10e	519	37	1.6	0.29	-	-	-		[145]
10f	617	86	1.0	-0.35	-	10	-		[145]
10h	507	37	1.6	0.29	-	12	-		[145]
10i	517	9	1.2	0.12	-	-	-		[145]
10j	500	19	13.0	0.24	-	-	-		[145]
10k	508	19	1.8	0.25	-	-	-		[145]
101	500	16	1.3	0.27	-	-	-		[145]
10m	503	17	0.79	0.37	-	-	-		[145]
10n	532	30	0.86	0.26	-	-	-		[145]
VTCzBN	496	98	9.9	0.06	499	31.7	(0.14, 0.56)	38	[147]
TCz-VTCzBN	521	98	8.7	< 0.01	524	32.2	(0.22, 0.71)	37	[147]

Table S6 Summary of photophysical properties and device performance of carbazole derivatives (from *ortho*-halogenated phenyl carbazole intramolecular C–H arylation)-based TADF emitters

IPzIDCz	525	76	2.9	0.07	531	23.9	(0.37, 0.57)	-	[148]
ImIDCz	478	51	704	-	-	-	-	-	[148]

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max},

(g) CIE coordinate, and (h) FWHM of electroluminescence.

	$\lambda_{FL}{}^a$	PLQY ^b	$ au_{ m d}{}^{ m c}$	$\Delta E_{\rm ST}^{\rm d}$	$\lambda_{\rm EL}{}^{\rm e}$	EQE_{max}^{f}	CIE ^g	D.C.
Compound	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	KeI.
DMAC-SFNP	545	-	88.6	0.27	-	32.2	-	[149]
DMAC-	- / -							
^t BuSFNP	540	-	53.7	0.32	-	18.5	-	[149]
DBCP	557	89	30.0	0.10	544	20.2	(0.38, 0.57)	[151]
CNTP-DMAC	~470	58	41	0.34	~480	15.6	(0.18, 0.30)	[153]
TRZ-MeIAc	473	89	82.3	0.19	494	20.3	(0.18, 0.38)	[155]
NID-MeIAc	565	86	235.4	0.22	589	23.7	(0.53, 0.47)	[155]
BN-MeIAc	497	96	28.1	0.11	504	37.2	(0.12,	[157]
DIV-WEIAC	497	90	20.1	0.11	504	57.2	0.63)	[137]
$37 + \pi$	529	74	1.1/3.3		-	-	-	[158]
$38 + \pi$	519	49	0.41/1.7		-	-	-	[158]
IT-TRZ	505	98	2.2	0.03	-	35.8	-	[159]
2S-TRZ	507	99	2.4	0.03	-	32.6	-	[159]

Table S7 Summary of photophysical properties and device performance of TADF emitters accessed from dehalogenated C–H arylation with forming 5/6-mermbered carbon ring

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max}, and (g) CIE coordinate of electroluminescence.

Compound	$\lambda_{FL}{}^a$	PLQY ^b	${ au_{ m d}}^{ m c}$	$\Delta E_{\rm ST}^{\rm d}$	$\lambda_{\rm EL}{}^{\rm e}$	EQE_{max}^{f}	CIE ^g	FWHM ^h	D-f
Compound	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	(nm)	Kel.
Phox- ^{Me} π	568	65	1.3	0.04	-	-	-	-	[169]
Phox- ^{MeO} π	598	40	1.6	0.03	-	-	-	-	[169]
^{MeO3}Ph - $^{FMe}\pi$	477	85	5.5	0.03	-	-	-	-	[169]
poly(DMTPA-	512	64	0.7	0.22	_	-	-	-	[171]
DCB)									
poly(TMTPA-	532	96	23	0.09	_	24.0	(0 34 0 57)	_	[171]
DCB)	552	20	2.3	0.09		21.0	(0.5 1, 0.5 7)		[1,1]
CNQxP-BDT-	-	-	1860	0.18	-	-	-	-	[173]
1125									
DTPz-BDT-	_	1	26000	0.40	-	-	-	_	[174]
TIPS									
DtCzB-DPTRZ	507	94	787.5	0.18	532	24.6	(0.33, 0.63)	39	[176]
DtCzB-TPTRZ	477	97	83.5	0.11	516	29.8	(0.18, 0.67)	38	[176]
DtCzB-PPm	474	96	86.5	0.11	508	28.6	(0.16, 0.66)	33	[176]
DtCzB-CNPm	481	93	524.3	0.15	540	25.0	(0.35, 0.63)	44	[176]
BN-CP1	490	93	79.6	0.12	496	40.0	(0.09, 0.50)	25	[178]
BN-CP2	490	91	83.6	0.13	497	36.4	(0.10, 0.53)	26	[178]

Table S8 Summary of photophysical properties and device performance of TADF emitters from Ircatalyzed C-H borylation

S-Cz-BN	490	94	69.6	0.15	488	30.5	(0.12, 0.43)	26	[179]
D-Cz-BN	490	98	76.0	0.13	488	37.2	(0.11, 0.43)	24	[179]
SF3BN	493	90	26.0	0.15	496	32.2	(0.09, 0.52)	30	[180]
SF1BN	493	93	9.5	0.13	492	35.9	(0.08, 0.47)	28	[180]
BN-TP	523	96	44	0.14	528	35.1	(0.26, 0.70)	36	[181]
(<i>R/S</i>)-OBN- 4CN-BN	500	96	97.4	0.13	508	24.7	(0.16, 0.66)	33	[182]
(<i>R/S</i>)-OBN- 2CN-BN	493	99	95.3	0.12	496	29.8	(0.13, 0.53)	33	[182]
DCzBN-Au	508	95	4.3	0.13	510	35.8	(0.16, 0.67)	34	[183]
(IPr)AuBN	515	92	5.5	0.08-0.09	509	24.0	(0.16, 0.66)	35	[184]
(BzIPr)AuBN	511	86	6.9	0.08-0.09	506	30.3	(0.16, 0.68)	34	[184]
(PyIPr)AuBN	511	93	7.3	0.08-0.09	515	24.0	(0.22, 0.67)	39	[184]
(PzIPr)AuBN	510	78	6.5	0.08-0.09	512	27.6	(0.18, 0.69)	37	[184]
(BzIPr)AuBNO	471	89	27.0	0.11	-	-	-	-	[184]
BNCz-pTPA	487	95	24.0	0.11	496	27.3	(0.12, 0.54)	34	[185]
BNCz-mTPA	489	92	29.4	0.12	496	24.6	(0.11, 0.53)	31	[185]
BN-R	624	94	71.8	0.11	617	22.0	(0.66, 0.34)	47	[186]

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max},

(g) CIE coordinate, and (h) FWHM of electroluminescence.

	$\lambda_{\mathrm{FL}}{}^{\mathrm{a}}$	PLQY ^b	${ au_d}^c$	$\Delta E_{\rm ST}^{\rm d}$	$\lambda_{\rm EL}^{\rm e}$	$EQE_{max}{}^{\rm f}$	CIE ^g	
Compound	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	Ref.
SFI23pTz	432	70	97.2	0.40	476	17.3	(0.15, 0.22)	[191]
SFI23mTz	451	35	176.6	0.30	484	16.5	(0.15, 0.27)	[191]
SFI23pPm	414	72	~189	0.36	-	5.1	(0.15, 0.10)	[192]
SF23oTz	473	52	4.3	0.08	484	19.6	(0.19, 0.35)	[193]
(S/R)-CzpPhTRZ	470	70	65	0.16	480	17.0	(0.17, 0.25)	[194]
B ² TPNF ₂	527	29	2.17	0.00	-	-	-	[123]
B ² CNPyF ₂	488	23	1.84	0.22	-	-	-	[123]
4hc	460	6	-	0.07	-	~1.2	-	[199]
4ic	466	7	-	0.07	-	1.5	-	[199]
DPS-BDMAC	481	69	2.1	0.02	498	12.4	(0.23, 0.40)	[200]
TRZ-BDMAC	510	87	2.8	0.01	516	13.9	(0.27, 0.51)	[200]
BPO-BDMAC	516	89	3.0	0.03	522	22.5	(0.29, 0.54)	[200]
DCz-ND	475	46	6.0	0.12	469	18.1	(0.15, 0.21)	[204]
DCz-ND-Cz	471	74	4.4	0.13	468	20.8	(0.16, 0.21)	[204]
DCz-ND-DCz	768	72	7.0	0.13	464	20.8	(0.16, 0.20)	[204]

Table S9 Summary of photophysical properties and device performance of TADF emitters from transition-metal-catalyzed oxidative couplings between C(sp²)–H and X–H bond

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max}, and (g) CIE coordinate of electroluminescence.

Compound	λ _{FL} ª [nm]	PLQY ^b [%]	τ _d c [μs]	$\Delta E_{\rm ST}^{\rm d}$ [eV]	λ _{EL} e [nm]	EQE _{max} f [%]	CIE ^g (x, y)	Ref.
fppyBTPA	494	72	2.0	~0	-	20.2	-	[213]
dfppyBTPA	490	95	2.4	~0	-	26.6	-	[213]
fppyBCzP	450	16	0.29	0.24	-	-	-	[213]
dfppyBCzP	455	15	0.18	-	-	-	-	[213]
MeFAC-B	504	97	0.06	7.1	494	22.7	(0.20, 0.42)	[214]
РуВ	599	33	2.8	-	-	-	-	[215]
PyB-F	604	28	1.5	-	-	-	-	[215]
BS	526	11	2.7	-	-	-	-	[215]
3-BPh ₂	666/704	< 1	1	-	-	-	-	[216]
2-NPh ₂	544	4	-	-	-	-	-	[216]
BO2	470	28	140	0.30	471	5.2	(0.16, 0.22)	[220]
BS2	491	81	22	0.12	489	20.9	(0.17, 0.39)	[220]
BO1	458	53	12	0.06	462	12.8	(0.15, 0.15)	[220]
<i>m</i> [B-N]N1	483	91	128.1	0.15	479	36.0	(0.12, 0.27)	[221]
<i>m</i> [B-N]N2	491	90	136.2	0.13	485	33.4	(0.11, 0.32)	[221]
<i>p</i> [B-N]O	497	91	-	0.44	493	26.3	(0.16, 0.51)	[222]
p[B-N]NO	529	89	-	0.37	525	27.6	(0.31, 0.65)	[222]

Table S10 Summary of photophysical properties and device performance of TADF emitters from directed C-H borylation

p[B-N]N	552	83	-	0.32	552	24.6	(0.41, 0.57)	[222]
tPh[BN]	467	75	-	0.63	463	6.1	(0.14, 0.20)	[223]
Cz[BN]	478	72	-	0.57	474	7.1	(0.14, 0.29)	[223]
3B4N	428	91	138.3	0.27	-	-	-	[224]
4B6N	459	100	639.7	0.25	-	-	-	[224]
5B8N	480	91	387.4	0.21	-	-	-	[224]

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max}, and (g) CIE coordinate of electroluminescence.

Compound	λ _{FL} ª [nm]	PLQY b [%]	τ _d ° [μs]	$\Delta E_{\rm ST}^{\rm d}$ [eV]	λ _{EL} ^e [nm]	EQE _m ax ^f [%]	CIE ^g (x, y)	FWHM ^h (nm)	Ref.
B2	455	53	30.4	0.19	460	18.3	(0.13, 0.11)	37	[225]
В3	441	33	-	0.15	-	-	-	-	[225]
B4	450	57	-	0.15	-	-	-	-	[225]
v-DABNA	467	90	4.1	0.017	469	34.4	(0.12, 0.11)	18	[226]
α-3BNOH	395	-	260	0.22	-	-	-	-	[227]
a-3BNMes	442	63	9.08/ 7060	-	443	14.6	(0.15, 0.10)	49	[228]
V-DABNA- Mes	484	80	2.4	0.008 5	480	22.9	(0.09, 0.21)	27	[229]
V-DABNA	473	85	1.5	-	483	26.2	(0.09, 0.27)	17	[230]
V-DABNA-F	459	91	2.1	-	468	26.6	(0.12, 0.10)	15	[230]
NOBNacene	410/430	71	1180	0.30	412	11.2	(0.18, 0.07)	41	[231]
ω -DABNA	509	87	8.95	0.011	512	31.1	(0.13, 0.73)	25	[232]
CzDABNA- NP-M/TB	468	86	106	0.18	-	-	-	-	[233]
Cz2DABNA- NP-M/TB	478	85	19	0.18	477	21.8	(0.11, 0.23)	27	[233]

Table S11 Summary of photophysical properties and device performance of TADF emitters from

one-shot borylation

CzB2-M/TB	491	88	50	0.11	-	-	-	-	[233]
Cz2B2-M/TB	483	88	42	0.11	-	-	-	-	[233]
CzDABNA- NP	461	80	77	0.18	-	-	-	-	[233]
CzDABNA- NP-TB/H	465	82	93	0.18	-	-	-	-	[233]
DABNA-NP- M	460	88	89	0.17	-	-	-	-	[233]
DABNA-NP- TB	453	83	90	0.17	457	19.5	(0.14, 0.11)	33	[233]
CzB2-M/P	504	87	24	0.06	497	26.7	(0.12, 0.57)	29	[233]
BN1	458	91	126.6	0.15	456	30.0	(0.14, 0.06)	24	[234]
BN2	467	93	74.6	0.13	468	32.9	(0.12, 0.10)	22	[234]
BN3	458	98	17.8	0.12	457	36.3	(0.14, 0.07)	21	[234]
tDPAC-BN	460	94.4	113.8	0.17	460	21.6	(0.14, 0.09)	28	[235]
tDMAC-BN	475	89.7	64.2	0.15	472	22.3	(0.12, 0.19)	34	[235]
TPD4PA	445	88.1	4.7	0.05	455	30.7	(0.14, 0.06)	29	[236]
^t Bu-TPD4PA	451	90.3	5.6	0.06	460	32.5	(0.14, 0.07)	29	[236]
PTZBN2	483TOL	95	22.4	0.15T OL	478	34.8	(0.15, 0.29)	48	[237]
PTZBN3	468TOL	98	26.5	0.17T OL	468	32.0	(0.15, 0.24)	46	[237]

t-DAB-DPA	446	94	28.8	0.10	459	27.6	(0.14, 0.08)	26	[238]
mBP- DABNA-Me	467	97	64.5	0.128	468	24.3	(0.12, 0.14)	28	[240]
<i>p</i> BP- DABNA-Me	462	98	53	0.176	464	23.4	(0.13, 0.09)	23	[241]
DPMX- CzDABNA	481	94.2	14.8	0.11	484	27.4	(0.10, 0.32)	29	[242]
C-BN	454	98	64.8	0.21	453	26.6	(0.14, 0.07)	25	[243]

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max},

(g) CIE coordinate, and (h) FWHM of electroluminescence.

Table S12 Summary of photophysical properties and device performance of TADF emitters from free-radical-involved C-H transformations

Compound	$\lambda_{FL}{}^a$	PLQY ^b	${ au_{ m d}}^{ m c}$	$\Delta E_{\rm ST}{}^{\rm d}$	$\lambda_{\rm EL}^{\rm e}$	$EQE_{max}{}^{\rm f}$	CIE ^g	Ref.
	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	
PHzBCO	524	52	9.3	0.006	520	19.6	(0.32, 0.50)	[245]
TRZ-Ph	491	95	4.6	0.03	490	22.6	(0.19, 0.40)	[247]
TRZ-Bu	463	73	51	0.19	466	7.4	(0.16, 0.21)	[247]
Pm-Ph	463	86	55	0.20	470	9.4	(0.15, 0.23)	[247]
IP-6-TPA	600	70	12.4	0.08	-	9.0	(0.51, 0.49)	[249]
IP-9-TPA	600	35	95.4	0.11	-	4.9	(0.51, 0.48)	[249]
AZA-BN	522	94	160	0.18	528	25.7	(0.28, 0.69)	[250]

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max},

and (g) CIE coordinate of electroluminescence.

Compound	$\lambda_{FL}{}^a$	PLQY ^b	${ au_d}^c$	$\Delta E_{ m ST}^{ m d}$	$\lambda_{\rm EL}^{\rm e}$	EQE_{max}^{f}	CIE ^g	Ref.
	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	
helicene-BN	520	98	71.8	0.15	523	31.5	(0.26, 0.66)	[257]
PSeZTRZ	-	86	-	0.05	-	16.9	-	[259]
SeDF-G	-	7.6	18.5	0.08	-	30.8	(0.31, 0.53)	[260]
SeDF-B	-	8.5	3.9	0.15	-	25.8	(0.19, 0.16)	[260]
SeDF-YG	-	2.6	4.6	0.15	-	23.9	(0.37, 0.51)	[260]
PSeBz	510	-	-	-	510	-	-	[261]
oPSeZBN	-	3	-	0.00	-	-	-	[262]
BNSSe	520	99	12.7	0.12	515	35.7	(0.37, 0.51)	[263]
BNSeSe	514	100	9.9	0.14	512	36.8	(0.37, 0.51)	[263]
BN-Se	502	99	5.2	0.08	506	32.6	(0.15, 0.62)	[264]

Table S13 Summary of photophysical properties and device performance of TADF emitters from

C-H vulcanization and selenidation

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max}, and (g) CIE coordinate of electroluminescence.

Compound	$\lambda_{\mathrm{FL}}{}^{\mathrm{a}}$	PLQY ^b	$ au_{ m d}{}^{ m c}$	$\Delta E_{\rm ST}^{\rm d}$	$\lambda_{\rm EL}^{\rm e}$	EQE _{max} ^f	CIE ^g	
	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	Ref.
DDCzIPN	477	91	2.8	0.13	497	18.9	(0.22, 0.46)	[268]
DDTPAIPN	543	93	1.5	0.17	528	16.9	(0.30, 0.61)	[269]
DTPAmCPIPN	566	100	1.7	0.15	544	19.2	(0.38, 0.57)	[269]
DDmCPIPN	535	76	2.1	0.13	532	15.7	(0.37, 0.57)	[269]
ТХО-ТРА	630	83	51.8	0.05	552	18.5	(0.45, 0.53)	[271]
TXO-PhCz	580	90	87.3	0.07	-	21.5	(0.31, 0.56)	[271]
CzTXO	-	30	1860	0.10	-	11.2	(0.16, 0.20)	[272]
CzSOXO	-	51	14.3	0.05	-	13.6	(0.37, 0.57)	[272]
MTXSFCz	451	-	45.3	0.19	-	-	-	[273]
TXO1-TPA	565	25	2.5	0.29	-	-	-	[274]
DTXO-TPA2	569	70	30	0.10	588	25.0	(0.51, 0.48)	[275]
DTXO-PhCz2	537	54	23	0.15	548	15.7	(0.41, 0.55)	[275]
P1	532	72	29.5	0.08	568	5.4	(0.45, 0.53)	[276]
P2	535	55	19.6	0.06	568	3.0	(0.46, 0.53)	[276]
QBP-DMAC	498	78	1870	0.33	523	18.8	(0.30, 0.53)	[278]
QBP-PXZ	535	65	2.3	0.06	550	16.6	(0.41, 0.55)	[278]

Table S14 Summary of photophysical properties and device performance of TADF emitters from C–H bond transformation-involved umpolung reactions

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max}, and (g) CIE coordinate of electroluminescence.

Table S15 Summary of photophysical properties and device performance of TADF emitters from other novel C-H bond transformations

Compound	$\lambda_{FL}{}^a$	PLQY ^b	${ au_{d}}^{c}$	$\Delta E_{\rm ST}^{\rm d}$	$\lambda_{\rm EL}{}^{\rm e}$	$EQE_{max}{}^{\rm f}$	CIE ^g	
	[nm]	[%]	[µs]	[eV]	[nm]	[%]	(x, y)	Ret.
D2T-TRZ	493	99	2.1	0.01	500	27.1	(0.22, 0.46)	[279]
2S-TRZ	507	99	2.4	0.03	-	35.6	-	[159]
IT-TRZ	505	98	2.2	0.03	-	36.1	-	[159]
IA-TRZ	517	96	2.4	-0.02	-	32.0	-	[159]
D2Y-TRZ	491	71	86	0.41	-	16.4	(0.22, 0.47)	[281]
<i>p</i> -D2T	514	99	2.4	0.14	496	25.6	(0.20, 0.45)	[282]
<i>m</i> -D2T	514	81	1.6	0.12	492	22.3	(0.20, 0.43)	[282]
c-D2T	504	88	2.4	0.17	484	26.3	(0.17, 0.35)	[282]
QAc-TRZ	494	97	3.4	0.08	-	37.3	-	[283]

(a) The λ_{PL} , (b) PLQY, (c) τ_d , and (d) ΔE_{ST} value in solution or film state. (e) The λ_{EL} , (f) EQE_{max},

and (g) CIE coordinate of electroluminescence.