Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Catalysis of surface dispersed Cu²⁺ species on *t*-ZrO₂: Square-planar Cu catalyzed cross-coupling of arylboronic acid and imidazole

Masaru Kondo,*¹ Tatsuya Joutsuka,*^{1,2} Kakeru Fujiwara,³ Tetsuo Honma,⁴ Masahiko Nishijima,⁵ Shohei Tada*⁶

¹Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi-shi, Ibaraki 316-8511

Japan ²Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106, Japan

³Department of Chemistry and Chemical Engineering, Yamagata University, Yamagata 992-8510, Japan

⁴Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan ⁵Flexible 3D System Integration Lab, SANKEN, Osaka University, Mihogaoka, Ibarakishi, Osaka 567-0047, Japan

⁶Department of Applied Science and Engineering, School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

Correspondence: <u>masaru.kondo.fg74@vc.ibaraki.ac.jp</u> <u>tatsuya.joutsuka.joe@vc.ibaraki.ac.jp</u> <u>shohei.tada.st@eng.hokudai.ac.jp</u>

CONTENTS:

Characterization of compounds					
Characterization of catal	lysts	SI-5			
Computational details of	DFT calculations	SI-9			
Control experiment		SI-11			
References		SI-12			
¹ H-, ¹³ C NMR charts		SI-13			

Characterization of Compounds

¹H-, ¹³C-NMR spectra were recorded with a Bruker AVANCE III (¹H-NMR 400 MHz, ¹³C-NMR 100 MHz). ¹H-NMR spectra are reported as follows: chemical shift in ppm relative to the chemical shift of CHCl₃ at 7.26 ppm, integration, multiplicities (s = singlet, d = doublet, t = triple, m = multiplet), and coupling constants (Hz). ¹³C-NMR spectra reported in ppm relative to the central line of triplet for CDCl₃ at 77 ppm. Column chromatography on SiO₂ was performed with Kanto Silica Gel 60 (40-100 µm). Commercially available organic and inorganic compounds were used without further purification.

3a: 21.8 mg, 76% yield; ¹H-NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.48-7.45 (m, 2H), 7.38-7.35 (m, 3H), 7.27-7.26 (m, 1H), 7.19 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 137.2, 135.5, 130.1, 129.8, 127.5, 121.4, 118.2. ¹H and ¹³C NMR charts were consistent with previously reported data.¹

3b: 29.3 mg, 93% yield; ¹H-NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.25-7.22 (m, 5H), 7.19 (s, 1H), 2.38 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 137.4, 135.0, 130.3 121.4, 118.55, 20.9 (two peaks were overlapped).

¹H and ¹³C NMR charts were consistent with previously reported data.¹

Ме **3b**

3c: 31.2 mg, 99% yield; ¹H-NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 3.6 Hz, 1H), 7.18-7.15 (m, 4H), 2.41 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 140.0, 137.3, 135.5, 130.2, 129.6, 128.2, 122.1, 118.5, 118.2, 21.3

¹H and ¹³C NMR charts were consistent with previously reported data.²

3d

7.20 (m, 5H), 7.06 (s, 1H), 2.19 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 137.4, 136.6, 133.8, 131.2, 129.3, 128.8, 126.8, 126.5, 120.4, 17.6

¹H and ¹³C NMR charts were consistent with previously reported data.¹

CI 3e **3e**: 25.2 mg, 71% yield; ¹H-NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.45 (d, J =8.8 Hz, 2H), 7.33 (d, J = 8.8 Hz, 2H), 7.22 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) & 135.9, 135.5, 130.7, 130.0, 122.7, 118.2 ¹H and ¹³C NMR charts were consistent with previously reported data.¹

3f: 26.8 mg, 77% yield; ¹H-NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.30 (d, J = 8.8 Hz, 2H), 7.20-7.17 (m, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 158.9, 135.8, 130.7, 129.9, 123.2, 118.7, 114.9,

ÓMe

3f

55.5

¹H and ¹³C NMR charts were consistent with previously reported data.¹

3g

3g: 29.8 mg, 77% yield; ¹H-NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.8 Hz, 2H), 7.78 (s, 1H), 7.62-7.50 (m, 4H), 7.45 (dd, J = 7.2, 1.1 Hz, 1H), 7.38-7.22 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 134.1, 134.0, 129.6, 129.4, 129.2, 128.2, 127.5, 126.9, 125.1, 123.6, 122.2 (two peaks were overlapped).

¹H and ¹³C NMR charts were consistent with previously reported data.²

3h: 31.5 mg, 81% yield; ¹H-NMR (400 MHz, CDCl₃) 7.97-7.94 (m, 2H), 7.89-7.86 (m, 2H), 7.80 (d, *J* = 2.2 Hz, 1H), 7.58-7.50 (m, 3H), 7.39 (s, 1H), 7.26 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 135.8, 134.7, 133.5, 132.1, 130.5, 130.0, 127.8, 127.7, 127.3, 126.5, 120.2, 119.0, 118.4

¹H and ¹³C NMR charts were consistent with previously reported data.²

3i: 11.1 mg, 37% yield; ¹H-NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.43 (dd, *J* = 5.2, 3.2 Hz, 1H), 7.23 (s, 1H), 7.21-7.20 (m, 1H), 7.18-7.16 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 136.3, 135.8, 130.0, 127.1, 121.4, 118.5, 113.2. **NMR** (100 MHz, CDCl₃) δ 136.3, 135.8, 130.0, 127.1, 121.4, 118.5, 113.2. **i**H and ¹³C NMR charts were consistent with previously reported data.³ **3i**

³J ¹H and ¹³C NMR charts were consistent with previously reported data.⁴

Characterization of catalysts

X-ray diffraction (XRD). The X-ray diffraction of the crystal structure was conducted using a Rigaku Miniflex diffractometer. A glass plate was utilized to hold the sample powder, which was then placed within the diffractometer. The X-ray source utilized was Cu K α , with an acceleration voltage of 40 kV and a current of 15 mA.

X-ray fluorescence (XRF). The determination of Cu loading in the catalyst was carried out via XRF analysis using PANalytical Epsilon 1 instrumentation. Prior to the measurements, the Cu-containing sample was mixed with an internal standard of 99.8% pure NiO (Aldrich). The mixing ratio of the catalyst to NiO was 50wt%. The acquired data was analyzed using the fundamental parameter method, employing Omnian software (PANalytical). Table S1 shows the lists of CuO loadings which were approximately 1 mmol g_{cat}^{-1} .

Sample	Cu content [mmol g_{cat}^{-1}]
CuO/TiO ₂	1.0
CuO/Al ₂ O ₃	1.2
CuO/ <i>m</i> -ZrO ₂	1.1
CuO/t-ZrO ₂	1.1

Table S1 Cu content of the prepared catalysts.

Temperature programmed reduction by H_2 (H_2 -*TPR*). H_2 -TPR measurements were conducted by a MicrotracBEL BELCAT-II to evaluate the reducibility of the catalysts. Before the measurement, 40 mg of the sample was heated in an Ar gas flow (Ar) at 300 °C for 1 h. After cooling the sample to room temperature, changing the gas to 5% H_2 /Ar, and the signal of TCD became stable, the measurement was started. The heating rate was set to 5 °C min⁻¹.

Scanning transmission electron microscopy (STEM). The particle morphology was investigated by an ultra-high resolution scanning transmission electron microscope (JEOL JEM-ARM200F) equipped with a spherical aberration corrector for a STEM probe. The sample was dispersed in ethanol (Wako, purity > 99.5%) and the suspension was dropped onto a carbon-coated molybdenum grid (Ohken shoji Co., NP-M15) to deposit the particles on the microgrid film of the grid. Elemental maps of Cu and Zr were recorded using an energy dispersive X-ray (EDX) detector.

X-ray absorption spectroscopy (XAS). Using X-ray absorption spectroscopy (XAS) at the BL14B2 beamline at SPring-8, the Cu K-edge XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) was measured. XAS data were collected in the quick mode. The Si (3 1 1) monochromator continuously moved from 25.415° to 22.05° over 313 s for the Cu K-edge. Spectra were collected in the transmission mode using ion chambers filled with an Ar/N₂ mixture on pressed pellets of the samples. The samples and BN were mixed using a mortar and pestle and pressed into a thin disk using a 10 mm die set. Spectra were corrected and normalized using Athena and Artemis.⁵ The radial structure function (RSF) was obtained by Fourier transformation of the k^3 -weighted experimental $\chi(k)$ function (k = 30-110 nm⁻¹) into the R space. Theoretical phase-shift and amplitude functions were calculated with the FEFF6 program.

Sample	Shell	S_0^2	CN	<i>R</i> / Å	σ^2 / Å ²	$\Delta E_0 / \mathrm{eV}$	R factor
CuO	Cu-O	0.810±0.112	4 *	1.96±0.01	0.004±0.001	3.48±1.76	0.007
	Cu-O		2 *	2.76±0.08	0.012±0.015		
	Cu-Cu		4 *	2.91±0.02	0.006±0.001		
	Cu-Cu		4 *	3.10±0.01	0.006±0.002		
CuO/Al ₂ O ₃	Cu-O	0.780±0.097	3.9±0.5	1.95±0.01	0.005±0.001	2.40±1.61	0.019
	Cu-O		1.9±0.2	2.89±0.04	0.009±0.005		
CuO/TiO ₂	Cu-O	0.812±0.108	4.0±0.5	1.95±0.01	0.004±0.001	3.04±1.80	0.008
	Cu-O		2.0±0.3	2.73±0.11	0.017±0.019		
	Cu-Cu		4.0±0.5	2.90±0.02	0.007±0.002		
	Cu-Cu		4.0±0.5	3.08±0.03	0.008±0.002		
CuO/m-ZrO ₂	Cu-O	0.746±0.123	4.0±0.5	1.95±0.01	0.003±0.002	3.23±2.29	0.012
	Cu-O		2.0±0.3	2.71±0.15	0.018±0.024		
	Cu-Cu		4.0±0.5	2.90±0.03	0.007±0.003		
	Cu-Cu		4.0±0.5	3.08±0.03	0.009±0.003		
CuO/t-ZrO ₂	Cu-O	0.793±0.084	3.9±0.4	1.95±0.01	0.006±0.001	1.60±1.44	0.019
CuO/t-ZrO ₂ After reaction	Cu-O	0.763±0.080	3.8±0.4	1.95±0.01	0.006±0.001	0.66±1.38	0.018

Table S2 Parameters calculated by fitting the EXAFS signals of CuO and the preparedCu-based catalysts shown in Fig. 2 and S1 [†]

[†] Notations: S_0^2 , intrinsic loss factor; *R*, distance; CN, coordination number; σ , Debye-Waller factor; ΔE_0 , increase in the threshold energy. Confidence intervals = 68%. * Fixed to the values.

Fig. S1 Cu-K edge XANES spectra for (a) CuO/t-ZrO₂ before and after reaction. (b) Fourier transforms of k^3 -weighted EXAFS oscillations measured at room temperature near the Cu K-edge of CuO/t-ZrO₂ before and after reaction. *k* range: 30-110 nm⁻¹. *R* range: 1.0-3.4 Å.

Fig. S2 XRD patterns of fresh and spent CuO/t-ZrO₂.

Computational details of DFT calculations

The CuO/*t*-ZrO₂ surface was prepared by starting from the *t*-ZrO₂ surface ($Zr_{96}O_{192}$) shown in **Fig. S3a**. Two Cu atoms were replaced with two surface Zr atoms, resulting in $Zr_{94}Cu_2O_{192}$ (**Fig. S3b**). The two Zr atoms are in the next-nearest neighbor positions with the Cu–Cu distance of 6.19 Å as observed in Fourier transforms of the *k*³-weighted EXAFS oscillations in **Fig. 3b**, and are labeled by Zr_S and Zr_W as shown in **Fig. S3b**, because the two species represent the strong and weak Lewis sites, respectively.⁶ After geometry optimization of Zr₉₄Cu₂O₁₉₂, Cu_S and Cu_W atoms that were respectively substituted for the Zr_S and Zr_W atoms became 4-fold and 5-fold coordinated. To make an oxygen vacancy at the surface, we removed one O atom among 32 O atoms in the top layer and the geometry was optimized. We performed 32 geometry optimizations and chose the most stable structure with the lowest energy for Zr₉₄Cu₂O₁₉₁ (**Fig. S3c**). Here, the O vacancy was made for the O atom bonded to the Cu atom with 4-fold coordination. The same computations followed and resulted in Zr₉₄Cu₂O₁₉₀ (**Fig. S3d**) and Zr₉₄Cu₂O₁₈₉ (**Fig. S3e**). The surfaces shown in **Figs. S3b**, **S3c**, **S3d**, and **S3e** correspond to Cu⁴⁺, Cu³⁺, Cu²⁺, and Cu⁺, respectively.⁷ In the calculation of adsorption energies, Zr₉₄Cu₂O₁₉₀ (**Fig. S3c**) was employed.

Fig. S3 Top views of (a) t-ZrO₂ (101) surface and the Cu-substituted surfaces with (b) zero, (c) one, (d) two, and (e) three oxygen vacancies. The labels of Cu (weak Lewis site, W; strong Lewis site, S) and coordination number (three-fold coordination, 3c; four-fold coordination, 4c; five-fold coordination, 5c) are also shown. Only the top layer is shown for clarity.

Using the calculated energies for the surfaces shown in **Figs. S3b–e**, we estimated the free energy difference of formation from the Cu^{4+} reference state given by previous reports.^{7,8} $\Delta G = G(Cu^{4-n}) - G(Cu^{4+}) + n\mu_0$.

Here, $G(Cu^m)$ denotes the free energy for the Cu^m state. The entropic contributions are neglected in this study and approximated by the energies by DFT calculations for the surfaces shown in **Fig. S4**. The chemical potential of oxygen at a given temperature *T* and pressure *p* is defined^{7,8}

$$\mu_0 = \mu_0(T, p^o) + \frac{k_B T}{2} \ln\left(\frac{p}{p^o}\right),$$

where k_B is the Boltzmann constant and p^o is the standard pressure of oxygen ($p^o = 1$ atm). The

energy of oxygen calculated by DFT $\binom{E_{0_2/2}}{2}$ was taken as a zero-reference state for μ_0 . Since the

reaction underwent at 50 °C in our experiment, we approximately assumed $\mu_0(T, p^0) = -0.27$ eV (300 K) for the chemical potential of oxygen.⁸ Fig. S4 shows the phase diagram of solid solution by plotting the free energy difference of formation as a function of chemical potential of oxygen. In the O-rich limit (high pressure of oxygen and high μ_0), the energy of Cu³⁺ is lower and the Cu³⁺ state is preferred. On the other hand, the Cu²⁺ state becomes more stable toward the O-poor limit (low μ_0). This indicates that Cu²⁺ and Cu³⁺ species are present at the CuO/*t*-ZrO₂ surface under O-rich conditions, agreeing with the proposed reaction mechanism in Fig. 10. Moreover, these results are consistent with the reduced catalytic reactivity observed in the reaction test (Table 1). Notably, at the calcination temperature of the catalyst, the formation energies shifted to the left side in Fig. S4, with the Cu²⁺ was oxidized to Cu³⁺, the atomic charges of the O atoms bonded with Cu atoms decrease from -0.45 to -0.50 on average. The more negatively charged O atoms around the Cu²⁺ cations may be more reducible as measured in the H₂-TPR experiment, and such tendency was also observed for the other Cu-doped oxides.⁹

Fig. S4 Formation free energy of the CuO/t-ZrO₂ surfaces as a function of the chemical potential of O atom for Cu⁴⁺, Cu³⁺, Cu²⁺, and Cu⁺ oxidation states at the reaction temperature.

Control experiment

Fig. S5 Colors of CuO/t-ZrO₂ (a) before MeOH was added, (b) after stirring in MeOH for 8 h at 50 $^{\circ}$ C.

References

- 1. K. Inamoto, K. Nozawa, J. Kadokawa and Y. Kondo, Tetrahedron 2012, 68, 7794.
- H. X. Li, W. Zhao, H. Y. Li, Z. L. Xu, W. X. Wang and J. P. Lang, *Chem. Commun.*, 2013, 49, 4259.
- 3. Y. Wang, Y. Zhang, B. Yang, A. Zhang and Q. Yao, Org. Biomol. Chem., 2015, 13, 4101
- 4. B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12, 537.
- S. Tada, N. Ochiai, H. Kinoshita, M. Yoshida, N. Shimada, T. Joutsuka, M. Nishijima, T. Honma, N. Yamauchi, Y. Kobayashi, et al. *ACS Catalysis*, 2022, 12, 7748.
- (a) F. Haase and J. Sauer, J. Am. Chem. Soc., 1998, 120, 13503; (b) M. Delarmelina, G. Deshmukh, A. Goguet, C. R. A. Catlow and H. Manyar, J. Phys. Chem. C, 2021, 125, 27578.
- 7. J. S. Elias, N. Artrith, M. Bugnet, L. Giordano, G. A. Botton, A. M. Kolpak and Y. Shao-Horn, *ACS Catal.*, 2016, **6**, 1675.
- 8. K. Reuter and M. Scheffler, M. Phys. Rev. B, 2001, 65, 035406.
- 9. T. Joutsuka, R. Hamamura, K. Fujiwara, T. Honma, M. Nishijima and S. Tada, *Int. J. Hydrog. Energy*, 2022, **47**, 21369.

NMR Charts ¹H-NMR (400 MHz, CDCl₃) chart of 3a SV/// 3a 9.5 9.0 8.5 7.5 7.0 6.5 8.0 6.0 5.5 0.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 0.993 2.036 3.059 1.074 0.997 $^{13}\text{C-NMR}$ (100 MHz, CDCl₃) chart of $\boldsymbol{3a}$ 137.24 135.45 130.14 129.81 127.47 121.43 118.20

170

SI-19

¹H-NMR (400 MHz, CDCl₃) chart of **3h**

¹H-NMR (400 MHz, CDCl₃) chart of 3j

