SUPPORTING INFORMATION

Evaluating metal oxide support effects on the RWGS activity of Mo₂C catalysts

Cameron F. Holder^{a*}, James R. Morse^a, Patrick M. Barboun^b, Andrew R. Shabaev^a, Jeffrey W. Baldwin^c, Heather D. Willauer^a

^a Materials Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375, USA

^b NRC Postdoctoral Research Associate, Naval Research Laboratory, Washington, D.C. 20375, USA

^c Acoustics Division, Naval Research Laboratory, Washington, D.C. 20375, USA

* Corresponding Author at: Naval Research Laboratory, Washington, D.C. 20375, USA

Email address: cameron.holder@nrl.navy.mil

Fig. S1 XRD patterns post-calcination depicting formed molybdenum oxides on the various metal oxide supports. The experimental patterns are shown in color while the corresponding metal oxide reference patterns are shown in gray.

Material	Molybdenum Oxides
Al ₂ O ₃	K2M0O4, KAI(M0O4)2, M0O3
SiO ₂	K2M04O13, M0O3
MgO	K10Mg(M07O27)
ZrO ₂	Zr(MoO ₄) ₂ , K ₂ MoO ₄ , MoO ₃
CeO ₂	KCe(MoO ₄) ₂

 Table S1 Molybdenum oxides identified by XRD post-calcination for each support.

Fig. S2 Experimental XRD pattern of K-Mo₂C/TiO₂ (black) with the associated reference patterns of TiMoO₄ (green), KTi₄O₈ (blue), and Mo₂C (red). The remaining unidentified peaks could not be matched to a reference pattern but are most likely ascribed to other molybdenum or titanium-base metal oxides.

Fig. S3 The production rate of CO as a function of residence time for K-Mo₂C supported on various metal oxide supports. The CO turnover frequency was extracted from the y-intercept of the best fit line that was generated from data points at the three lowest residence times for each catalyst/support system.

Fig. S4 Temperature programmed oxidation (solid lines) and temperature programmed desorption (dashed lines) experiments for the bare metal oxide supports (blue) and supported K-Mo₂C materials (red) are shown in the top row. The corresponding mass spectra for m/z 44 and 28 are shown in the bottom row for supported K-Mo₂C. No significant increase in m/z 28 signal was observed indicating that either Mo₂O_xC_y was not formed or the subsequent formation of CO was below the detectable limits of the mass spectrometer.

Fig. S5 Computational models showing the interaction of CO_2 and CO when placed on bulk slabs of (a,b) $Mo_2C(100)$ and (c,d) MgO(111). The green spheres represent Mg, the red spheres represent O, the blue spheres represent Mo, and the gray spheres represent carbon.

Fig. S6 Relaxed energies of the combined slabs at various initial separation distances for $Mo_2C(100)$ and the O-terminated MgO(111) slabs. The inset shows a magnified region at lower initial slab separation distances. For initial separation distances less than 4 Å, the relaxed structure showed a separation distance of approximately 1.5 Å.

Fig. S7 Charge density difference of the $Mo_2C(100)$ ribbon on top of the O-terminated MgO(111) slab. The yellow isosurfaces are indicative of areas with increased electron density whereas the blue isosurfaces indicate areas with decreased electron density.