Supporting Information

Identifying Magic-number Structures of Supported Sub-Nano Ni Cluster and the Influence of Hydrogen Coverage: A Density Functional Theory Based Particle Swarm Optimization Investigation

Qitang Ma^{a,†}, Houyu Zhu^{a,*,†}, Dongyuan Liu^a, Rui Li^a, Tuya Li^a, Hao Ren^a, Wen Zhao^a,

Yuan Pan^b, Yunqi Liu^b, Wenyue Guo^{a,*}

^a School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China

^b State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China

*Corresponding authors: Houyu Zhu, Wenyue Guo

E-mail address: hyzhu@upc.edu.cn, wyguo@upc.edu.cn

[†] These authors have made an equal contribution to this work.

Figure S1. Five lowest-energy structures of the Ni_n (n = 2–11) cluster on ZnO(000¹). The most stable ones are chosen to represent the global minimum geometries for each cluster, and the corresponding total energies are taken as the energy reference (E_{ref} , eV).

Figure S2. Five lowest-energy structures of the Ni_n (n = 12–21) cluster on ZnO(000¹). The most stable ones are chosen to represent the global minimum geometries for each cluster, and the corresponding total energies are taken as the energy reference (E_{ref} , eV).

Figure S3. Five lowest-energy structures of the Ni_n (n = 2–11) cluster on γ -Al₂O₃(100). The most stable ones are chosen to represent the global minimum geometries for each cluster, and the corresponding total energies are taken as the energy reference (E_{ref} , eV).

Figure S4. Five lowest-energy structures of the Ni_n (n = 12–21) cluster on γ -Al₂O₃(100). The most stable ones are chosen to represent the global minimum geometries for each cluster, and the corresponding total energies are taken as the energy reference (E_{ref} , eV).

Figure S5. Two types of Ni₁₃/ZnO and Ni₁₃/ γ -Al₂O₃ models. Type I: Ni₁₃/ZnO (a) and Ni₁₃/ γ -Al₂O₃ (c) models are searched and optimized by the DFT based PSO methods. Type II: Ni₁₃/ZnO (b) and Ni₁₃/ γ -Al₂O₃ (d) models are constructed by direct deposition of the most stable gas-phase magic Ni₁₃ cluster on ZnO(000¹) and γ -Al₂O₃(100), respectively. The total energies of Type I models are taken as the energy reference (E_{ref} , eV).

	AUB		AUB
Ni ₂	11.00	Ni ₁₂	6.00
Ni ₃	10.00	Ni ₁₃	5.64
Ni ₄	9.00	Ni ₁₄	5.60
Ni ₅	8.00	Ni ₁₅	5.57
Ni ₆	8.00	Ni ₁₆	5.56
Ni ₇	7.50	Ni ₁₇	5.56
Ni ₈	7.42	Ni ₁₈	5.50
Ni ₉	6.89	Ni ₁₉	5.36
Ni ₁₀	6.7	Ni ₂₀	5.04
Ni ₁₁	6.36	Ni ₂₁	5.00

Table S1. Average uncoordinated bonds (AUB) of gas-phase Ni clusters.

	ZnO)	Al ₂ O ₃		
	uncorrected	corrected	uncorrected	corrected	
Ni ₁₁ H ₂	-477.48	-480.23	-881.12	-885.11	
Ni ₁₁ H ₄	-481.55	-484.36	-887.96	-891.94	
Ni ₁₁ H ₆	-490.84	-493.67	-896.45	-900.52	
Ni ₁₁ H ₈	-499.87	-502.79	-902.48	-906.61	
$Ni_{11}H_{10}$	-508.11	-511.12	-909.53	-913.75	
Ni ₁₁ H ₁₂	-516.63	-519.71	-916.74	-920.91	

Table S2. Comparison between the D3 corrected and uncorrected energies (eV) for the $Ni_{11}H_x$ (x = 2, 4, 6, 8, 10, 12) clusters on ZnO and γ -Al₂O₃ surfaces.