Supporting Information

The effect of *N*-vacancy on the photocatalytic activity of graphitic carbon nitride in oxidative Mannich reaction

Temirlan Kubanaliev^{1,3}, Zafer Eroglu¹, Melek Sermin Ozer^{1,*}, Onder Metin^{1,2,3,*}

¹Department of Chemistry, College of Sciences, Koç University, 34450 Istanbul, Türkiye.

²Koç University Surface Science and Technology Center (KUYTAM), Istanbul 34450, Türkiye.

³Koç University Tüpraş Energy Center (KUTEM), 34450 Sarıyer, Istanbul, Türkiye.

e-mail: melekozer@ku.edu.tr (M.S. Ozer); ometin@ku.edu.tr (O. Metin)

Materials

Urea (CH₄N₂O) (Merck) (99%), Tetrahydroisoquinoline (C₉H₁₁N) (THIQ) (Sigma-Aldrich) (95%), Copper(I) iodide (CuI) (98%), tripotassium phosphate (K₃PO₄) (Sigma-Aldrich) (98%), Ethylene glycol (C₂H₆O₂), Iodobenzene (C₆H₅I) (Alfa Aesar) (98%), 4'-Iodoacetophenone (C₈H₇IO) (Alfa Aesar) (98%), Potassium iodide (KI) (Merck), Hydrogen Peroxide (H₂O₂) (ISOLAB) (35%), were purchased from various companies. All chemicals and solvents were used as received without further purification

Catalyst characterization

Figure S1. Images of g–CN, A–g–CN₆₁₀, A–g–CN₆₃₀ and A–g–CN₆₅₀ in sample holders.

Figure S2. TEM images of A–g–CN₆₁₀ and A–g–CN₆₃₀.

Figure S3. XPS survey spectra of g–CN and A–g–CN₆₅₀.

KI-starch test

KI-starch test was used to detect peroxides formed during the reaction^{1,2}. The KI-starch stock solution was prepared by dissolving 1 g of commercial starch and 500 mg of KI in 30 mL of distilled water. A control experiment was performed by adding 0.25 mmol of H_2O_2 (35%) to the KI-starch stock solution. The oxidative Mannich-type reaction was conducted using 0.25 mmol of *N*-phenyl tetrahydroisoquinoline (**1b**), 10 equivalents of Acetone (**2a**), 0.2 equivalents of L-proline, O_2 balloon and 5 mg of catalyst in 1 mL of DMSO. The reaction mixture was then irradiated with white light (150 W) for 2 h at 25 °C. An oxidative Mannich-type reaction was tested under three different conditions: i) without the KI-starch stock solution ii) with the addition of the KI-starch stock solution before light irradiation, and iii) with the addition of the KI-starch stock solution after 2 h of light irradiation.

Figure S4. KI-starch test summary. From top-left, KI-starch stock, KI-starch control with H_2O_2 , oxidative Mannich-type reaction conditions, oxidative Mannich-type reaction with KI-starch stock solution before light irradiation, oxidative Mannich-type reaction with KI-starch stock solution after 2 h light irradiation.

Reusability experiments

Figure S5. Reusability of A–g–CN₆₅₀ on photoredox oxidative Mannich reaction.

Figure S6. a) XRD patterns before and after reusability of A–g–CN₆₅₀. **b)** XPS survey spectra, and high-resolution spectra of **c)** C1s, **d)** N1s regions of A–g–CN₆₅₀ after reusability test. **e-f)** TEM images of A–g–CN₆₅₀ after reusability test at different magnifications. **g)** HAADF-STEM image and **h-k)** elementals mappings of the A–g–CN₆₅₀ after reusability test.

Conversion calculations from the ¹H NMR for the substrate scope of the C– C bond formation

The reaction conversions were calculated using relative areas of peak from ¹H NMR of products after drying. As a reference, hydrogen atoms highlighted in red (**Figure S 5**) were calibrated to value of two and the quartet peak at δ 5.4 was attributed to the hydrogen atom in the product highlighted in the blue. The conversion was calculated by taking percent ratio of product peak to the sum of (**H**) reactant peak divided by two and (**H**) product peak. The sample calculation example is given below.

Figure S6. Sample conversion calculation example of oxidative Mannich type reaction.

GC-MS spectra of the tetrahydroisoquinoline derivatives with alcohols.

¹H NMR spectra of the tetrahydroisoquinoline derivatives.

¹H NMR spectral data of the tetrahydroisoquinoline derivatives.

References

- 1 Y. Nosaka and A. Y. Nosaka, *Chem Rev*, 2017, **117**, 11302–11336.
- E. Tatunashvili, B. Chan, P. E. Nashar and C. S. P. McErlean, *Org Biomol Chem*, 2020, **18**, 1812–1819.
- 3 E. E. Bjerg, J. Marchán-García, E. Buxaderas, Y. Moglie and G. Radivoy, *Journal of Organic Chemistry*, 2022, **87**, 13480–13493.
- B. Gröll, P. Schaaf and M. Schnürch, *Monatsh Chem*, 2017, **148**, 91–104.