Supporting information

Elucidating the rate-determining step of ammonia decomposition on Ru-based catalysts using ab initio–grounded microkinetic modeling

Shekhar R Kulkarni^{a,\$}, Natalia Realpe^{a,\$}, Attada Yerrayya^a, Vijay Kumar Velisoju^a, Salvador Sayas^a, Natalia Morlanes^a, Jose Cerillo^a, Sai P. Katikaneni^b, Stephen N. Paglieri^b, Bandar Solami^b, Jorge Gascon^a, Pedro Castaño^a*

^a KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

^b Carbon Management R&D Division, Research and Development Center, Saudi Aramco, Dhahran, Saudi Arabia 31311

[§] These authors contributed equally

* Corresponding author: pedro.castano@kaust.edu.sa

Microkinetic modeling derivation

Based on the Quasi-equilibrium hypothesis, the macrokinetic model developed in this study relies on the following steps to obtain the species coverage:

- i. Select a reaction mechanism
- ii. Make a rate law for each step, which are assumed to be elementary
- iii. Propose a rate-determining step (RDS)
- iv. For the proposed RDS: k is small, while the remaining reactions are assumed to be in equilibrium, i.e., -r/k = 0 is valid for the rest.
- v. Solve all the intermediate concentrations and write a site balance to solve θ^* by considering the expression: $\sum_{i=1}^{n} \theta_i^* = 1$.

Detailed derivations for the rate laws included in the main article are presented in this section.

For the six elementary reactions, R1–R6, the respective rate laws are formulated as follows:

$$r_{1} = k_{1} P_{NH_{3}} \theta^{*} - k_{1} \theta_{NH_{3}}^{*} = k_{1} (P_{NH_{3}} \theta^{*} - \frac{\theta_{NH_{3}}^{*}}{K_{1}})$$
(a1)

$$r_{2} = k_{2}\theta_{NH_{3}}^{*}\theta^{*} - k_{2}\theta_{NH_{2}}^{*}\theta_{H}^{*} = \frac{k_{2}(\theta_{NH_{3}}^{*}\theta^{*} - \frac{\theta_{NH_{2}}^{*}\theta_{H}^{*}}{K_{2}})}{K_{2}}$$
(a2)

$$r_{3} = k_{3}\theta_{NH_{2}}^{*}\theta^{*} - k_{3}\theta_{NH}^{*}\theta_{H}^{*} = k_{3}(\theta_{NH_{2}}^{*}\theta^{*} - \frac{\theta_{NH}^{*}\theta_{H}^{*}}{K_{3}})$$
(a3)

$$r_4 = k_4 \theta_{NH}^* \theta^* - k_4 \theta_N^* \theta_H^* = k_4 (\theta_{NH}^* \theta^* - \frac{\theta_N^* \theta_H^*}{K_4})$$
(a4)

$$r_{5} = k_{5}\theta_{N}^{*2} - k_{5}P_{N_{2}}\theta^{*2} = k_{5}(\theta_{N}^{*2} - \frac{P_{N_{2}}\theta^{*2}}{K_{5}})$$
(a5)

$$r_{6} = k_{6}\theta_{H}^{*2} - k_{6}P_{H_{2}}\theta^{*2} = k_{6}(\theta_{H}^{*2} - \frac{P_{H_{2}}\theta^{*2}}{K_{6}})$$
(a6)

Step iii can be further applied for the NH₃ decomposition reaction where one of the three possible cases is assumed to be the RDS:

- i. Case A: Dissociation of adsorbed NH₃ with N–H bond scission.
- ii. Case B: Desorption of adsorbed N atoms.
- iii. Case C: Dissociation of adsorbed NH with N-H bond scission.

These are the most commonly proposed RDSs for NH₃ decomposition via experimental and modeling studies in the literature. However, desorption of adsorbed N adatoms (Case B) is the most widely accepted option for the tested metal–support pairs.

Step 1: Select the reaction mechanism

Adsorption:
$$^{NH_3+} * \leftrightarrow ^{NH_3*}$$
 (R1)

Surface reaction 1:
$$^{NH_3*} + * \leftrightarrow ^{NH_2*} + H^*$$
 (R2)

Surface reaction 2:
$$^{NH_2^*} + * \leftrightarrow ^{NH^*} + H^*$$
 (R3)

Surface reaction 3:
$$NH^* + * \leftrightarrow N^* + H^*$$
 (R4)

Desorption 1: ${}^{2N*} \leftrightarrow N_2 + 2^*$ (R5)

Desorption 2:
$$^{2H*} \leftrightarrow H_2 + 2^*$$
 (R6)

Step 2: Make the rate law for each step

$$r_{1} = k_{1} P_{NH_{3}} \theta^{*} - k_{1} \theta_{NH_{3}}^{*} = k_{1} (P_{NH_{3}} \theta^{*} - \frac{\theta_{NH_{3}}^{*}}{K_{1}})$$
(a1)

$$r_{2} = k_{2}\theta_{NH_{3}}^{*}\theta^{*} - k_{2}\theta_{NH_{2}}^{*}\theta_{H}^{*} = \frac{k_{2}(\theta_{NH_{3}}^{*}\theta^{*} - \frac{\theta_{NH_{2}}^{*}\theta_{H}^{*}}{K_{2}})}{K_{2}}$$
(a2)

$$r_{3} = k_{3}\theta_{NH_{2}}^{*}\theta^{*} - k_{3}\theta_{NH}^{*}\theta_{H}^{*} = k_{3}(\theta_{NH_{2}}^{*}\theta^{*} - \frac{\theta_{NH}^{*}\theta_{H}^{*}}{K_{3}})$$
(a3)

$$r_4 = k_4 \theta_{NH}^* \theta^* - k_4 \theta_N^* \theta_H^* = k_4 (\theta_{NH}^* \theta^* - \frac{\theta_N^* \theta_H^*}{K_4})$$
(a4)

$$r_{5} = k_{5}\theta_{N}^{*2} - k_{5}P_{N_{2}}\theta^{*2} = k_{5}(\theta_{N}^{*2} - \frac{P_{N_{2}}\theta^{*2}}{K_{5}})$$
(a5)

$$r_{6} = k_{6}\theta_{H}^{*2} - k_{6}P_{H_{2}}\theta^{*2} = k_{6}(\theta_{H}^{*2} - \frac{P_{H_{2}}\theta^{*2}}{K_{6}})$$
(a6)

Step 3: Propose the RDS

According to the literature, the most common RDS for NH₃ decomposition are

- (a) Dissociation of adsorbed NH₃ with N-H bond scission
- (b) Desorption of adsorbed N atoms
- (c) Dissociation of adsorbed NH with N-H bond scission

To obtain the kinetic equations, one step is considered to be the RDS and the rest are assumed to be in equilibrium.

For RDS: k is small

For others: -r/k = 0

Case (a): Dissociation of adsorbed NH₃ with N-H bond scission is assumed as the RDS

Step 4: Solve intermediate concentrations

Since the surface reaction 1 is the RDS,

$$\frac{r_1}{k_1} = 0 \implies P_{NH_3}\theta^* - \frac{\theta_{NH_3}^*}{K_1} = 0 \implies \theta_{NH_3}^* = K_1 P_{NH_3}\theta^*$$
(a7)

$$\frac{r_3}{k_3} = 0 \implies \theta_{NH_2}^* \theta^* - \frac{\theta_{NH}^* \theta_H^*}{K_3} = 0 \implies \theta_{NH}^* \theta_H^* = K_3 \theta_{NH_2}^* \theta^*$$
(a8)

$$\frac{r_4}{k_4} = 0 \Longrightarrow \theta_{NH}^* \theta^* - \frac{\theta_N^* \theta_H^*}{K_4} = 0 \Longrightarrow \theta_N^* \theta_H^* = K_4 \theta_{NH}^* \theta^*$$
(a9)

$$\frac{r_5}{k_5} = 0 \Longrightarrow \theta_N^{*2} - \frac{P_{N_2} \theta^{*2}}{K_5} = 0 \Longrightarrow \theta_N^* = \sqrt{\frac{P_{N_2}}{K_5}} \theta^*$$
(a10)

$$\frac{r_6}{k_6} = 0 \Longrightarrow \theta_H^{*2} - \frac{P_{H_2} \theta^{*2}}{K_6} = 0 \Longrightarrow \theta_H^* = \sqrt{\frac{P_{H_2}}{K_6}} \theta^*$$
(a11)

By introducing the values of θ_N^* and θ_H^* from Eqs. a10 and a11 in Eq. a9,

$$\theta_{NH}^{*} = \frac{1}{K_4} \sqrt{\frac{P_{N_2} P_{H_2}}{K_5 K_6}} \theta^{*}$$
(a12)

By introducing the values of θ_{NH}^* and θ_{H}^* from Eq. a12 and a11 in Eq. a8,

$$\theta_{NH_2}^{*} = \frac{P_{H_2}}{K_3 K_4 K_6} \sqrt{\frac{P_{N_2}}{K_5}} \theta^*$$
(a13)

Step 5: Write a site balance and solve θ^*

$$\theta^{*} + \theta_{NH_{3}}^{*} + \theta_{NH_{2}}^{*} + \theta_{NH}^{*} + \theta_{N}^{*} + \theta_{H}^{*} = 1$$
(a14)

By introducing the values of $\theta_{NH_{3}}^{*}$, $\theta_{NH_{2}}^{*}$, θ_{NH}^{*} , $\theta_{N'}^{*}$, and θ_{H}^{*} from Eqs. a7, a13, a12, a10, and a11 in Eq. a14 and taking θ^{*} common,

$$\theta^* \left(1 + K_1 P_{NH_3} + \frac{P_{H_2}}{K_3 K_4 K_6} \sqrt{\frac{P_{N_2}}{K_5}} + \frac{1}{K_4} \sqrt{\frac{P_{N_2} P_{H_2}}{K_5 K_6}} + \sqrt{\frac{P_{N_2}}{K_5}} + \sqrt{\frac{P_{H_2}}{K_6}} \right) = 1$$

Therefore,

$$\theta^* = \frac{1}{\left(1 + K_1 P_{NH_3} + \frac{P_{H_2}}{K_3 K_4 K_6} \sqrt{\frac{P_{N_2}}{K_5}} + \frac{1}{K_4} \sqrt{\frac{P_{N_2} P_{H_2}}{K_5 K_6}} + \sqrt{\frac{P_{N_2}}{K_5}} + \sqrt{\frac{P_{H_2}}{K_6}}\right)}$$
(a15)

$$\theta^{*2} = \frac{1}{\left(1 + K_1 P_{NH_3} + \frac{P_{H_2}}{K_3 K_4 K_6} \sqrt{\frac{P_{N_2}}{K_5}} + \frac{1}{K_4} \sqrt{\frac{P_{N_2} P_{H_2}}{K_5 K_6}} + \sqrt{\frac{P_{N_2}}{K_5}} + \sqrt{\frac{P_{H_2}}{K_6}}\right)^2}$$
(a16)

By introducing the values of $\theta_{NH_{3'}}^*$, $\theta_{NH_{2'}}^*$ and θ_{H}^* from Eqs. a7, a13, and a11 in Eq. a2,

$$r_{2} = k_{2} \left(K_{1} P_{NH_{3}} \theta^{*2} - \frac{P_{H_{2}}}{K_{2} K_{3} K_{4} K_{6}} \sqrt{\frac{P_{N_{2}}}{K_{5}}} \sqrt{\frac{P_{H_{2}}}{K_{6}}} \theta^{*2} \right)$$
(a17)

and substituting the value of θ^{*2}

$$r_{2} = \frac{k_{2} \left(K_{1} P_{NH_{3}} - \frac{P_{H_{2}}^{3/2}}{K_{2} K_{3} K_{4} K_{6}^{3/2}} \sqrt{\frac{P_{N_{2}}}{K_{5}}}\right)}{\left(1 + K_{1} P_{NH_{3}} + \frac{P_{H_{2}}}{K_{3} K_{4} K_{6}} \sqrt{\frac{P_{N_{2}}}{K_{5}}} + \frac{1}{K_{4}} \sqrt{\frac{P_{N_{2}} P_{H_{2}}}{K_{5} K_{6}}} + \sqrt{\frac{P_{N_{2}}}{K_{5}}} + \sqrt{\frac{P_{H_{2}}}{K_{5}}}\right)^{2}}$$
(a18)

The slow step/RDSs are partially reversible, which means that the second term in the above equation is negligible; therefore,

$$r_{2} = \frac{k_{2} K_{1} P_{NH_{3}}}{\left(1 + K_{1} P_{NH_{3}} + \frac{P_{H_{2}}}{K_{3} K_{4} K_{6}} \sqrt{\frac{P_{N_{2}}}{K_{5}}} + \frac{1}{K_{4}} \sqrt{\frac{P_{N_{2}} P_{H_{2}}}{K_{5} K_{6}}} + \sqrt{\frac{P_{N_{2}}}{K_{5}}} + \sqrt{\frac{P_{H_{2}}}{K_{6}}} \right)^{2}}$$
(a19)

Case (b): Desorption of adsorbed N atoms is assumed as the RDS

Starting from step 4 and solving the intermediate concentrations, since the desorption 1 is the RDS,

$$\frac{r_1}{k_1} = 0 \Longrightarrow P_{NH_3} \theta^* - \frac{\theta_{NH_3}^*}{K_1} = 0 \Longrightarrow \theta_{NH_3}^* = K_1 P_{NH_3} \theta^*$$
(b1)

$$\frac{r_2}{k_2} = 0 \Longrightarrow \theta_{NH_3}^* \theta^* - \frac{\theta_{NH_2}^* \theta_H^*}{K_2} = 0 \Longrightarrow \theta_{NH_2}^* = \frac{K_2 \theta_{NH_3}^* \theta^*}{\theta_H^*}$$
(b2)

$$\frac{r_3}{k_3} = 0 \Longrightarrow \theta_{NH_2}^* \theta^* - \frac{\theta_{NH}^* \theta_H^*}{K_3} = 0 \Longrightarrow \theta_{NH}^* \theta_H^* = K_3 \theta_{NH_2}^* \theta^*$$
(b3)

$$\frac{r_4}{k_4} = 0 \Longrightarrow \theta_{NH}^* \theta^* - \frac{\theta_N^* \theta_H^*}{K_4} = 0 \Longrightarrow \theta_N^* \theta_H^* = K_4 \theta_{NH}^* \theta^*$$
(b4)

$$\frac{r_6}{k_6} = 0 \Longrightarrow \theta_H^{*2} - \frac{P_{H_2} \theta^{*2}}{K_6} = 0 \Longrightarrow \theta_H^* = \sqrt{\frac{P_{H_2}}{K_6}} \theta^*$$
(b5)

By substituting the values of $\theta_{NH_3}^*$ and θ_H^* from Eq. b1 and b5 in Eq. b2,

$$\theta_{NH_2}^{*} = \frac{K_1 K_2 \sqrt{K_6}}{\sqrt{P_{H_2}}} P_{NH_3} \theta^{*}$$
(b6)

By substituting the values of $\theta_{NH_2}^*$ and θ_H^* from Eq. b6 and b5 in Eq. b3,

$$\theta_{NH}^{*} = \frac{K_1 K_2 K_3 K_6}{P_{H_2}} P_{NH_3} \theta^{*}$$
(b7)

By substituting the values of θ_{NH}^* and θ_{H}^* from Eq. b7 and b5 in Eq. b4,

$$\theta_N^* = \frac{K_1 K_2 K_3 K_4 K_6^{3/2}}{P_{H_2}^{3/2}} P_{NH_3} \theta^*$$
(b8)

Step 5: Write the site balance and solve for θ^*

$$\theta^* + \theta_{NH_3}^* + \theta_{NH_2}^* + \theta_{NH}^* + \theta_N^* + \theta_H^* = 1$$
(b9)

By introducing the values of $\theta_{NH_{3'}}^* \theta_{NH_{2'}}^* \theta_{NH}^*, \theta_{N'}^*$ and θ_{H}^* from Eqs. b1, b6, b7, b8, and b5 in Eq. b9 and taking θ^* common,

$$\theta^* \left(1 + K_1 P_{NH_3} + \frac{K_1 K_2 \sqrt{K_6}}{\sqrt{P_{H_2}}} P_{NH_3} + \frac{K_1 K_2 K_3 K_6}{P_{H_2}} P_{NH_3} + \frac{K_1 K_2 K_3 K_4 K_6^{3/2}}{P_{H_2}^{3/2}} P_{NH_3} + \sqrt{\frac{P_{H_2}}{K_6}} \right)_{=1}$$

Therefore,

$$\theta^{*} = \frac{1}{\left(1 + K_{1}P_{NH_{3}} + \frac{K_{1}K_{2}\sqrt{K_{6}}}{\sqrt{P_{H_{2}}}}P_{NH_{3}} + \frac{K_{1}K_{2}K_{3}K_{6}}{P_{H_{2}}}P_{NH_{3}} + \frac{K_{1}K_{2}K_{3}K_{4}K_{6}^{3/2}}{P_{H_{2}}^{3/2}}P_{NH_{3}} + \sqrt{\frac{P_{H_{2}}}{K_{6}}}\right)}$$
(b10)

$$\theta^{*2} = \frac{1}{\left(1 + K_1 P_{NH_3} + \frac{K_1 K_2 \sqrt{K_6}}{\sqrt{P_{H_2}}} P_{NH_3} + \frac{K_1 K_2 K_3 K_6}{P_{H_2}} P_{NH_3} + \frac{K_1 K_2 K_3 K_4 K_6^{3/2}}{P_{H_2}^{3/2}} P_{NH_3} + \sqrt{\frac{P_{H_2}}{K_6}}\right)^2}$$
(b11)

By substituting the values of θ_N^* from Eq. b8 in Eq. a5,

$$r_{5} = k_{5} \left(\frac{K_{1}K_{2}K_{3}K_{4}K_{6}^{3/2}}{P_{H_{2}}^{3/2}} P_{NH_{3}} \right)^{2} - \frac{P_{N_{2}}}{K_{5}} \theta^{*2}$$
(b12)

and substituting θ^{*2} from Eq. b11 in Eq. b12,

$$k_{5} \left(\frac{K_{1}K_{2}K_{3}K_{4}K_{6}^{3/2}}{P_{H_{2}}^{3/2}} P_{NH_{3}} \right)^{2} - \frac{P_{N_{2}}}{K_{5}} \right)$$

$$r_{5} = \frac{1}{\left(1 + K_{1}P_{NH_{3}} + \frac{K_{1}K_{2}\sqrt{K_{6}}}{\sqrt{P_{H_{2}}}} P_{NH_{3}} + \frac{K_{1}K_{2}K_{3}K_{6}}{P_{H_{2}}} P_{NH_{3}} + \frac{K_{1}K_{2}K_{3}K_{6}}{P_{H_{2}}^{3/2}} P_{NH_{3}} + \frac{K_{1}K_{2}K_{3}K_{6}}{P_{H_{2}}^{3/2}} P_{NH_{3}} + \frac{\sqrt{P_{H_{2}}}}{K_{6}} \right)^{2}}$$
(b13)

The slow step/RDSs are partially reversible, which means that the second term in the above equation is negligible; therefore,

$$k_{5}(K_{1}K_{2}K_{3}K_{4})^{2}K_{6}^{3}P_{NH_{3}}^{2}$$

$$\overline{P_{H_{2}}^{3/2}\left(1+K_{1}P_{NH_{3}}+\frac{K_{1}K_{2}\sqrt{K_{6}}}{\sqrt{P_{H_{2}}}}P_{NH_{3}}+\frac{K_{1}K_{2}K_{3}K_{6}}{P_{H_{2}}}P_{NH_{3}}+\frac{K_{1}K_{2}K_{3}K_{4}K_{6}^{3/2}}{P_{H_{2}}^{3/2}}P_{NH_{3}}+\sqrt{\frac{P_{H_{2}}}{K_{6}}}\right)^{2}}$$
(b14)

Case (c): Dissociation of adsorbed NH with N–H bond scission is assumed as the RDS

Starting from step 4 and solving the intermediate concentrations, since the surface reaction 3 is the RDS,

$$\frac{r_1}{k_1} = 0 \implies P_{NH_3}\theta^* - \frac{\theta_{NH_3}^*}{K_1} = 0 \implies \theta_{NH_3}^* = K_1 P_{NH_3}\theta^*$$
(c1)

$$\frac{r_2}{k_2} = 0 \Longrightarrow \theta_{NH_3}^* \theta^* - \frac{\theta_{NH_2}^* \theta_H^*}{K_2} = 0 \Longrightarrow \theta_{NH_2}^* = \frac{K_2 \theta_{NH_3}^* \theta^*}{\theta_H^*}$$
(c2)

$$\frac{r_3}{k_3} = 0 \Longrightarrow \theta_{NH_2}^* \theta^* - \frac{\theta_{NH}^* \theta_H^*}{K_3} = 0 \Longrightarrow \theta_{NH}^* \theta_H^* = K_3 \theta_{NH_2}^* \theta^*$$
(c3)

$$\frac{r_5}{k_5} = 0 \Longrightarrow \theta_N^{*2} - \frac{P_{N_2} \theta^{*2}}{K_5} = 0 \Longrightarrow \theta_N^{*} = \sqrt{\frac{P_{N_2}}{K_5}} \theta^{*}$$
(c4)

$$\frac{r_6}{k_6} = 0 \Longrightarrow \theta_H^{*2} - \frac{P_{H_2} \theta^{*2}}{K_6} = 0 \Longrightarrow \theta_H^* = \sqrt{\frac{P_{H_2}}{K_6}} \theta^*$$
(c5)

By substituting the values of $\theta_{NH_3}^{*}$ and θ_{H}^{*} from Eq. b1 and b5 in Eq. b2,

$$\theta_{NH_2}^{*} = \frac{K_1 K_2 \sqrt{K_6}}{\sqrt{P_{H_2}}} P_{NH_3} \theta^{*}$$
(c6)

By substituting the values of $\theta_{NH_2}^*$ and θ_H^* from Eqs. b6 and b5 in Eq. b3,

$$\theta_{NH}^{*} = \frac{K_1 K_2 K_3 K_6}{P_{H_2}} P_{NH_3} \theta^{*}$$
(c7)

Step 5: Write a site balance and solve θ^*

$$\theta^{*} + \theta_{NH_{3}}^{*} + \theta_{NH_{2}}^{*} + \theta_{NH}^{*} + \theta_{N}^{*} + \theta_{H}^{*} = 1$$
(c8)

By introducing the values of $\theta_{NH_{3'}}^* \theta_{NH_{2'}}^* \theta_{NH}^* \theta_{N'}^*$ and θ_{H}^* from Eqs. b1, b6, b7, b8, and b5 in Eq. b9 and taking θ^* common,

$$\theta^* \left(1 + K_1 P_{NH_3} + \frac{K_1 K_2 \sqrt{K_6}}{\sqrt{P_{H_2}}} P_{NH_3} + \frac{K_1 K_2 K_3 K_6}{P_{H_2}} P_{NH_3} + \sqrt{\frac{P_{N_2}}{K_5}} + \sqrt{\frac{P_{H_2}}{K_6}} \right) = 1$$

Therefore,

$$\theta^* = \frac{1}{\left(1 + K_1 P_{NH_3} + \frac{K_1 K_2 \sqrt{K_6}}{\sqrt{P_{H_2}}} P_{NH_3} + \frac{K_1 K_2 K_3 K_6}{P_{H_2}} P_{NH_3} + \sqrt{\frac{P_{N_2}}{K_5}} + \sqrt{\frac{P_{H_2}}{K_6}}\right)}$$
(c9)

$$\theta^{*2} = \frac{1}{\left(1 + K_1 P_{NH_3} + \frac{K_1 K_2 \sqrt{K_6}}{\sqrt{P_{H_2}}} P_{NH_3} + \frac{K_1 K_2 K_3 K_6}{P_{H_2}} P_{NH_3} + \sqrt{\frac{P_{N_2}}{K_5}} + \sqrt{\frac{P_{H_2}}{K_6}}\right)^2}$$
(c10)

By substituting the values of θ_{NH}^* , θ_{N}^* , and θ_{H}^* from Eqs. c7, c4, and c5 in Eq. a4,

$$r_{4} = \frac{k_{4} \left(\frac{K_{1} K_{2} K_{3} K_{6}}{P_{H_{2}}} P_{NH_{3}} - \sqrt{\frac{P_{N_{2}}}{K_{5}}} \sqrt{\frac{P_{H_{2}}}{K_{6}}} \frac{1}{K_{4}} \right) \theta^{*2}$$
(c11)

and substituting θ^{*2} in Eq. c11,

$$k_{4} \left(\frac{K_{1}K_{2}K_{3}K_{6}}{P_{H_{2}}} P_{NH_{3}} - \sqrt{\frac{P_{N_{2}}}{K_{5}}} \sqrt{\frac{P_{H_{2}}}{K_{6}}} \frac{1}{K_{4}} \right)$$

$$\overline{\left(1 + K_{1}P_{NH_{3}} + \frac{K_{1}K_{2}\sqrt{K_{6}}}{\sqrt{P_{H_{2}}}} P_{NH_{3}} + \frac{K_{1}K_{2}K_{3}K_{6}}{P_{H_{2}}} P_{NH_{3}} + \sqrt{\frac{P_{N_{2}}}{K_{5}}} + \sqrt{\frac{P_{H_{2}}}{K_{6}}} \right)^{2}}$$
(c12)

The slow step/RDSs are partially reversible, which means that the second term in the above equation is negligible; therefore,

$$r_{4} = \frac{k_{4}K_{1}K_{2}K_{3}K_{6}(P_{NH_{3}})}{P_{H_{2}}\left(1 + K_{1}P_{NH_{3}} + \frac{K_{1}K_{2}\sqrt{K_{6}}}{\sqrt{P_{H_{2}}}}P_{NH_{3}} + \frac{K_{1}K_{2}K_{3}K_{6}}{P_{H_{2}}}P_{NH_{3}} + \sqrt{\frac{P_{N_{2}}}{K_{5}}} + \sqrt{\frac{P_{H_{2}}}{K_{6}}}\right)^{2}}$$
(c13)

Supplementary tables

	Fe	Со	Ni	Ni	Cu	Pd	Ru (this	Ru/K(this
	(110)	(111)	(111)	(100)	(111)	(111)	work)	work)
$NH_{3}(g)$ to $NH_{3}(s)$	0				0	0	0.00	0
$NH_{3}(s)$ to $NH_{3}(g)$	0.83	0.68	0.75		0.46	0.84	0.24	0.04
NH_3 to $NH_2 + H$	0.72	1.01	1.11	0.96	1.84	1.71	1.27	0.68
$NH_2 + H$ to NH_3	1.34	1.15	1.39	1.21	1.1	1.22	1.44	2.08
NH_2 to $NH + H$	0.24	0.21	0.59	1.63	1.59	1.54	0.77	0.66
$NH + H$ to NH_2	1.35	0.65	1.16	1.09	0.74	1.39	1.18	1.26
NH to $N + H$	1.16	1.06	1.11	0.89	2.19	1.7	1.17	0.92
N + H to NH	1.59	0.96	1.05	0.60	0.49	0.99	0.96	1.57
N_2 to $N + N$	1.19	1.24	1.37	1.68	3.45	2.83	1.42	0.71
$N + N$ to N_2	2.85	1.86	1.86	1.66	0.2	0.76	1.82	1.24
H_2 to $H + H$					0.56		0.00	0.15
$H + H$ to H_2					0.99		1.22	1.88

Table S1. Adsorption energies (eV) for different species present in the $_{\rm NH3}$ decomposition process on pure Ru (111) and Ru–K/CaO surfaces

Table S2. Comparison of the best-fitted activation energy values for the Ru/CaO and Ru–K/CaO catalysts.

Ε		Ru/	CaO		Ru–K/CaO			
(kJ mol ⁻¹)	Case A	Case B	Case C	DFT	Case A	Case B	Case C	DFT
E ₂	159.76	98.47	88.19	121.92	140.26	72.37	108.33	65.28
E_3	36.33	77.43	10.04	73.92	60.13	63.27	14.20	63.36
E_4	82.31	67.33	89.91	112.32	95.49	103.94	40.42	88.32
E_5	315.39	119.11	186.54	174.72	124.58	130.40	152.54	119.04
E ₆	202.33	112.64	113.25	117.12	200.23	211.20	129.62	180.48
E ₁₁	35.31	21.09	65.04	23.04	7.81	3.19	69.53	3.84
E ₂₂	31.32	124.89	118.02	138.24	197.36	172.60	92.12	199.68
E ₃₃	255.82	104.91	20.28	113.28	121.36	133.72	26.74	120.96
E44	71.15	123.47	88.87	92.16	126.42	100.66	126.66	150.72
E55	147.17	110.63	122.52	136.32	61.33	63.00	67.88	68.16
E ₆₆	0.00	0.00	65.69	0	13.92	11.33	79.45	14.4
	0.9909	0.9705	0.9966		0.9929	0.9573	0.6859	R ²
	0.0233	0.0204	0.0012		0.0154	0.081	0.2449	σ^2
	0.1527	0.1430	0.0359		0.1243	0.2850	0.4949	σ

Supplementary figures:

Figure S1. Catalyst synthesis protocols for the Ru/CaO and the Ru-K/CaO catalysts.

Figure S2. TEM images for the (a) Ru/CaO and the (b) Ru-K/CaO catalysts.

Figure S2. Optimized structures of various species involved in the NH_3 decomposition mechanism on the Ru (111) surface.

Figure S3. Optimized structures of various species involved in the NH_3 decomposition mechanism on the Ru-K/CaO catalyst.