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Microkinetic modeling derivation

Based on the Quasi-equilibrium hypothesis, the macrokinetic model developed in this study relies

on the following steps to obtain the species coverage:

1. Select a reaction mechanism
ii.  Make a rate law for each step, which are assumed to be elementary
iii.  Propose a rate-determining step (RDS)
iv.  For the proposed RDS: k is small, while the remaining reactions are assumed to be in
equilibrium, i.e., —1/k = 0 is valid for the rest.
v.  Solve all the intermediate concentrations and write a site balance to solve # "~ by considering
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Detailed derivations for the rate laws included in the main article are presented in this section.

For the six elementary reactions, R1-R6, the respective rate laws are formulated as follows:
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Step iii can be further applied for the NH; decomposition reaction where one of the three possible

cases is assumed to be the RDS:

1. Case A: Dissociation of adsorbed NH; with N—H bond scission.
ii.  Case B: Desorption of adsorbed N atoms.

1il. Case C: Dissociation of adsorbed NH with N-H bond scission.

These are the most commonly proposed RDSs for NH; decomposition via experimental and
modeling studies in the literature. However, desorption of adsorbed N adatoms (Case B) is the

most widely accepted option for the tested metal-support pairs.

Step 1: Select the reaction mechanism

Adsorption: NHz + * ©NH; ' (R1)
Surface reaction 1; Vs~ + * ONHy™ +H’ (R2)
Surface reaction 2: NHz ™ + * ©NH™ + H” (R3)
Surface reaction 3: NH™ + « ©N" +H" (R4)
Desorption 1; 2N * ©Nz+27 (RS)
Desorption 2: 2H * ©Hy+2° (R6)

Step 2: Make the rate law for each step
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Step 3: Propose the RDS
According to the literature, the most common RDS for NH; decomposition are

(a) Dissociation of adsorbed NH3 with N—H bond scission
(b) Desorption of adsorbed N atoms
(c) Dissociation of adsorbed NH with N—H bond scission

To obtain the kinetic equations, one step is considered to be the RDS and the rest are assumed to

be in equilibrium.

For RDS: k is small

For others: —r/k =0

Case (a): Dissociation of adsorbed NH; with N—H bond scission is assumed as the RDS
Step 4: Solve intermediate concentrations

Since the surface reaction 1 is the RDS,
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Step 5: Write a site balance and solve 6~
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The slow step/RDSs are partially reversible, which means that the second term in the above

equation is negligible; therefore,
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Case (b): Desorption of adsorbed N atoms is assumed as the RDS
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Starting from step 4 and solving the intermediate concentrations, since the desorption 1 is the RDS,
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Step 5: Write the site balance and solve for "
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The slow step/RDSs are partially reversible, which means that the second term in the above

equation is negligible; therefore,
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Case (¢): Dissociation of adsorbed NH with N-H bond scission is assumed as the RDS

Starting from step 4 and solving the intermediate concentrations, since the surface reaction 3 is the

RDS,
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The slow step/RDSs are partially reversible, which means that the second term in the above

equation is negligible; therefore,
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Supplementary tables

Table S1. Adsorption energies (eV) for different species present in the yy3 decomposition process
on pure Ru (111) and Ru—K/CaO surfaces

Fe Co Ni Ni Cu Pd Ru (this  Ru/K(this
(110) (111) (A11) (100) (111) (111) work) work)

NH; (g) to NH; (s) 0 0 0 0.00 0
NH; (s)toNH; (g)  0.83  0.68  0.75 046 0.84 0.24 0.04
NH; to NH, + H 072 101 111 096 184 1.71 127 0.68
NH, + H to NH; 134 115 139 121 1.1 122 1.44 2.08
NH, to NH + H 024 021 059 1.63 159 1.54 0.77 0.66
NH + H to NH, 135 065 1.6 1.09 074 139 1.18 1.26
NH to N + H .16 106 111 089 219 1.7 1.17 0.92
N+ H to NH 159 096 1.05 060 049 0.99 0.96 1.57
N> toN+N 1.19 124 137 168 345 2.83 1.42 0.71
N +Nto N, 285 186 1.86 1.66 02 0.76 1.82 1.24
H,to H+H 0.56 0.00 0.15
H+H to H, 0.99 1.22 1.88

Table S2. Comparison of the best-fitted activation energy values for the Ru/CaO and Ru—K/CaO
catalysts.

E Ru/Ca0O Ru-K/CaO
(kJmol'™") CaseA CaseB CaseC DFT CaseA CaseB CaseC DFT
E, 159.76  98.47 88.19 121.92  140.26 72.37 108.33  65.28
E; 36.33 77.43 10.04 73.92 60.13 63.27 14.20 63.36
E4 82.31 67.33 89.91 112.32 9549 103.94  40.42 88.32
Es 315.39 119.11 186.54 174.72  124.58 130.40 152.54 119.04
E¢ 202.33 112.64 113.25 117.12  200.23 211.20 129.62 180.48
Ei 35.31 21.09 65.04 23.04 7.81 3.19 69.53 3.84
E»» 31.32 124.89 118.02 13824 19736 172.60 92.12 199.68
Es; 255.82 104.91 20.28 113.28 12136 133.72  26.74 120.96
E44 71.15 123.47  88.87 92.16 126.42 100.66 126.66  150.72
Ess 147.17 110.63 122.52 136.32 61.33 63.00 67.88 68.16
Ees 0.00 0.00 65.69 0 13.92 11.33 79.45 14.4
0.9909 09705  0.9966 0.9929 0.9573 0.6859 R?
0.0233 0.0204  0.0012 0.0154 0.081 0.2449 4

0.1527  0.1430  0.0359 0.1243  0.2850 04949 o




Supplementary figures:
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Figure S1. Catalyst synthesis protocols for the Ru/CaO and the Ru-K/CaO catalysts.
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Figure S2. TEM images for the (a) Ru/CaO and the (b) Ru-K/CaO catalysts.
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Figure S2. Optimized structures of various species involved in the NH; decomposition
mechanism on the Ru (111) surface.
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Figure S3. Optimized structures of various species involved in the NH; decomposition
mechanism on the Ru-K/CaO catalyst.



