Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

ELECTRONIC SUPPLEMENTARY INFORMATION

Solvent-modulated Binding Selectivity of Reaction Substrates to Onium-based σ -Hole Donors

Alexandra A. Sysoeva, Alexander S. Novikov, Mikhail V. Il'in, Dmitrii S. Bolotin*

Table of contents

Synthesis of the sulfonium salt Cat1 ^{OTf}	S2
Synthesis of the sulfonium salt Cat2 ^{OTf}	S3
Synthesis of the sulfonium salt Cat3 ^{OTf}	S4
Spectra of Cat1 ^{OTf} – Cat3 ^{OTf}	S5
Representative ¹ H NMR monitoring spectra	S14
Plots representing the catalysts' stability in each ¹ H NMR monitoring experiments	S15
Derivation of equations for calculating the reaction rate constants	S18
Table S1. Calculated total electronic energies (E, in Hartree), enthalpies (H, in Hartree),	Gibbs
free energies (G, in Hartree), and entropies (S, cal/mol•K) for optimized equilibrium	model
structures	S21

Synthesis of the sulfonium salt Cat1^{OTf}

To the mixture of dibenzothiophene (500 mg, 2.75 mmol) and diphenyliodonium triflate (775 mg, 1.81 mmol) in 1,2-dichloroethane (5 mL) was added $Cu(OTf)_2$ (66 mg, 0.18 mmol). and stirred for 30 min at 130 °C. Then the solvent was evaporated *in vacuo* at 50 °C and product were isolated via column chromatography (eluent: CHCl₃/MeOH, gradient from 5 to 10 %). After that the solvent was evaporated *in vacuo* at 50 °C, the residue was crystallized under Et₂O and dried at 50 °C in air.

Yield: 84 % (623 mg). M.p.: 192–193 °C. ¹H NMR (400.13 MHz, $(CD_3)_2CO$): $\delta = 8.56$ (d, ³*J*_{HH} = 7.9 Hz, 2H, Ar), 8.42 (d, ³*J*_{HH} = 8.1 Hz, 2H, Ar), 8.03 (td, ³*J*_{HH} = 7.9 Hz, ⁴*J*_{HH} = 0.9 Hz, 2H, Ar), 7.84 – 7.79 (m, 5H, Ar), 7.70 – 7.66 (m, 2H, Ar). ¹³C{¹H} NMR (101.61 MHz, $(CD_3)_2CO$): $\delta = 139.6$, 134.9, 134.5, 132.5, 131.7, 131.6, 130.5, 128.4, 127.8, 124.7 (Ar), 121.6 (q, ¹*J*_{CF} = 321.9 Hz, CF₃). HRMS (ESI-TOF): m/z calcd for C₁₈H₁₃S⁺: 261.0733; found: 261.0734.

Synthesis of the sulfonium salt Cat2^{OTf}

Cu(OTf)₂ (33 mg, 0.09 mmol) was added to the mixture of dibenzoselenophene (253 mg, 1.10 mmol) and diphenyliodonium triflate (393 mg, 0.91 mmol) in 1,2-dichloroethane (5 mL) and the resulting mixture was stirred for 30 min at 130 °C. Then the solvent was evaporated *in vacuo* at 50 °C and product was isolated via column chromatography (eluent: CHCl₃/MeOH, 95:5). After that the solvent was evaporated in vacuo at 50 °C, the residue was crystallized using Et₂O and dried at 50 °C in air.

Yield: 80 % (335 mg). M.p.: 200–202 °C. ¹H NMR (400.13 MHz, (CD₃)₂CO): δ = 8.47–8.44 (m, 4H, Ar), 7.93 (t, ³*J*_{HH} = 7.6 Hz, 2H, Ar), 7.74 (t, ³*J*_{HH} = 7.7 Hz, 2H, Ar), 7.69–7.67 (m, 2H, Ar), 7.64–7.60 (m, 1H, Ar), 7.56–7.52 (m, 2H, Ar). ¹³C{¹H} NMR (101.61 MHz, (CD₃)₂CO): δ = 141.7, 135.7, 133.5, 132.9, 131.6, 131.3, 131.1, 130.0, 129.7, 125.2 (Ar), 121.4 (q, ¹*J*_{CF} = 321.9 Hz, CF₃). HRMS (ESI-TOF): m/z calcd for C₁₈H₁₃Se⁺: 309.0177; found: 309.0183.

Synthesis of dibenziodolium triflate Cat3^{OTf}

This salt was synthesized according to published procedure (DOI: 10.1021/acs.joc.1c02885). *m*-CPBA (77%, 665 mg, 2.96 mmol) and TfOH (0.521 mL, 5.89 mmol) were added to a stirred solution of 2-iodo-1,1'-biphenyl (550 mg, 0.346 mL, 1.97 mmol) in dry CH₂Cl₂ (5 mL) and then stirred for 1 h at RT. After that the solvent was evaporated *in vacuo* at RT, and the product was crystallized under Et₂O (10 mL). The precipitate formed was stirred for 20 min at RT and filtered off, washed with Et₂O (10 mL), and dried at 50 °C in air.

Yield: 90 % (760 mg). M.p.: 240–242 °C. ¹H NMR (400.13 MHz, DMSO-d₆): δ = 8.37 (dd, ³*J*_{HH} = 8.0 Hz, ⁴*J*_{HH} = 1.5 Hz, 1H, Ar), 8.15 (d, ³*J*_{HH} = 8.1 Hz, 1H, Ar), 7.79 (t, ³*J*_{HH} = 7.5 Hz, 1H, Ar), 7.67 (td, ³*J*_{HH} = 7.8 Hz, ⁴*J*_{HH} = 1.4 Hz, 1H, Ar). ¹³C{1H} NMR (101.61 MHz, DMSO-d₆): δ = 142.1, 131.5, 131.1, 131.0, 127.4 and 121.9 (Ar); 121.2 (q, ¹*J*_{CF} = 322.3 Hz, CF₃). HRMS (ESI) *m/z*: [M]⁺ Calcd for C₁₂H₈I 278.9665; Found 278.9667.

Spectra of Cat1^{OTf}–Cat3^{OTf}

Figure S3. HRESI⁺-MS of Cat1^{OTf}.

Figure S4.¹H NMR spectrum of Cat2^{OTf}.

Figure S5.¹³C{¹H} NMR spectrum of Cat2^{OTf}.

Figure S6. HRESI+-MS of Cat2^{OTf}.

Figure S7.¹H NMR spectrum of Cat3^{OTf}.

Figure S8.¹³C{¹H} NMR spectrum of Cat3^{OTf}.

Figure S9. HRESI+-MS of Cat3^{OTf}.

Representative ¹H NMR monitoring spectra

Plots representing the catalysts' stability in each ¹H NMR monitoring experiments.

Derivation of equations for calculating the reaction rate constants

The rate of the reversible reaction (ω) can be represented as the difference between the rates of the forward reaction (ω_1) and reverse reaction (ω_{-1}):

$$\omega = \omega_1 - \omega_{-1}.$$

The rate of the forward reaction is:

$$\omega_1 = k_1 a b,$$

where k_1 – the rate constant of the forward reaction (M⁻¹ s⁻¹), *a* – concentration of aldehyde (M), *b* – concentration of amine (M).

The rate of the reverse reaction is:

$$\omega_{-1} = k_{-1}cd,$$

where k_{-1} – the rate constant of the reverse reaction (M⁻¹ s⁻¹), *c* – concentration of imine (M), *d* – concentration of water (M).

Then,

$$\omega = k_1 a b - k_{-1} c d.$$

Since the experiments have always used equivalent amounts of aldehyde and amine, it is possible to replace the designation of amine concentration with aldehyde concentration:

$$a_0 = b_0 \Rightarrow a = b \text{ and } a_{eq} = b_{eq},$$

where a_{eq} and b_{eq} – equilibrium concentrations of aldehyde and amine,

$$\omega = k_1 a^2 - k_{-1} c d.$$

When equilibrium is reached, the rate of the reversible reaction becomes 0:

$$\omega_{eq} = k_1 a_{eq}^2 - k_{-1} c_{eq} d_{eq} = 0.$$

Now we can express the equilibrium constant as the ratio of the reaction rate constants or the ratio of the equilibrium concentrations:

$$k_1 a_{eq}^2 = k_{-1} c_{eq} d_{eq}$$
$$K = \frac{k_1}{k_{-1}} = \frac{c_{eq} d_{eq}}{a_{eq}^2},$$

where K – equilibrium constant.

We introduce x – the depth of the reversible reaction (M):

$$x = a_0 - a = b_0 - b = c - c_0 = d - d_0$$
,

It means that

$$a = a_0 - x = b_0 - x,$$
$$c = x + c_0,$$

But due to the fact that we do not have an imine at the beginning of the reaction, i.e. $c_0 = 0$,

c = x

and

$$d = x + d_0,$$

because the solvent contains trace amounts of water, $d_0 \neq 0$. We determined the concentration d_0 for each experiment. The concentration x_{eq} has been determined as equilibrium concentration of imine ($x_{eq} = c_{eq}$). Also, we can use it for calculating of *K*:

$$K = \frac{x_{eq}(x_{eq} + d_0)}{(a_0 - x_{eq})^2}$$

Let's write an expression for the reaction rate, where we express all concentrations in terms of *x*:

$$\omega = k_1 (a_0 - x)^2 - k_{-1} x (x + d_0)$$

This expression must be factorized. To do this, you need to find the roots of the quadratic equation at a reversible reaction rate of 0, i.e. at equilibrium concentrations (x_{eq}):

$$k_1(a_0 - x_{eq})^2 - k_{-1}x_{eq}(x_{eq} + d_0) = 0$$

by Vieta's theorem:

$$x_{eq} + x_{eq}^* = \frac{2k_1a_0 + k_{-1}d_0}{k_1 - k_{-1}} \quad | \div k_{-1},$$

where x_{eq} – experimental depth of the reversible reaction, x_{eq}^* – an additional value that has no physical meaning

$$x_{eq} + x_{eq}^* = \frac{2Ka_0 + d_0}{K - 1}$$
$$x_{eq}^* = \frac{2Ka_0 + d_0}{K - 1} - x_{eq}$$

Represent the reaction rate function in the factorized form:

$$\omega = (k_1 - k_{-1})(x - x_{eq})(x - x_{eq}^*)$$

In differential form:

$$\omega = \frac{dx}{dt} = (k_1 - k_{-1})(x - x_{eq})(x - x_{eq}^*)$$

We can integrate it:

$$\int \frac{dx}{(x - x_{eq})(x - x_{eq}^*)} = \int (k_1 - k_{-1}) dt$$
$$\ln \frac{x_{eq}^*(x - x_{eq})}{x_{eq}(x - x_{eq}^*)} = (k_1 - k_{-1}) (x_{eq} - x_{eq}^*) t$$

We can represent this function as a straight line in linearized coordinates $(t; \ln \frac{x_{eq}^*(x-x_{eq})}{x_{eq}(x-x_{eq}^*)})$ with the slope $S = (k_1 - k_{-1})(x_{eq} - x_{eq}^*)$.

Finally, the system of equations must be solved:

$$\begin{cases} S = (k_1 - k_{-1})(x_{eq} - x_{eq}^*) \\ K = \frac{k_1}{k_{-1}} \end{cases}$$
$$k_1 = \frac{SK}{(x_{eq} - x_{eq}^*)(K - 1)}$$
$$k_{-1} = \frac{k_1}{K} = \frac{S}{(x_{eq} - x_{eq}^*)(K - 1)}$$

Table S1. Calculated total electronic energies (E, in Hartree), enthalpies (H, in Hartree),Gibbs free energies (G, in Hartree), and entropies (S, cal/mol•K) for optimized equilibrium
model structures.

Model structure	E	H	G	S
H ₂ O	-76.3733780915	-76.348052	-76.369486	45.111
Me ₂ SO	-553.065637884	-552.978329	-553.012939	72.843
MeCN	-132.692388989	-132.641721	-132.670260	60.065
MeOH	-115.654766560	-115.598251	-115.625092	56.491
CHCI ₃	-1419.16396168	-1419.138146	-1419.172634	72.587
DMF	-248.392497055	-248.281154	-248.317282	76.039
Pyridine	-248.171803951	-248.076658	-248.109232	68.558
THF	-232.336639049	-232.212121	-232.245959	71.218
H ₂ O…H ₂ O	-152.759928707	-152.706132	-152.738057	67.192
Me ₂ SO····Me ₂ SO	-1106.15823194	-1105.981024	-1106.032622	108.599
MeCN…MeCN	-265.390057597	-265.286684	-265.334079	99.751
MeOH…MeOH	-231.323554167	-231.207966	-231.248838	86.023
CHCI ₃ ····CHCI ₃	-2838.33319760	-2838.279537	-2838.335211	117.176
DMF…DMF	-496.803514693	-496.578030	-496.629587	108.511
PyridinePyridine	-496.351167709	-496.158989	-496.208832	104.905
THFTHF	-464.680697093	-464.429474	-464.481684	109.886
Cat1+	-1091.36335792	-1091.092011	-1091.149702	121.422
Cat2+	-3092.65033002	-3092.379265	-3092.437958	123.529
Cat3+	-472.960288041	-472.788091	-472.834997	98.721
Cat1⁺····H₂O	-1167.75756654	-1167.458135	-1167.522213	134.863
Cat1⁺Me ₂ SO	-1644.45985240	-1644.099410	-1644.172767	154.393
Cat1+MeCN	-1224.07631922	-1223.751791	-1223.823670	151.283
Cat1+MeOH	-1207.03926423	-1206.709695	-1206.777125	141.918
Cat1⁺CHCl ₃	-2510.53719308	-2510.237787	-2510.316798	166.292
Cat1⁺…DMF	-1339.78308928	-1339.397629	-1339.475774	164.470
Cat1+Pyridine	-1339.55908935	-1339.189811	-1339.263685	155.481
Cat1⁺…THF	-1323.72409936	-1323.325185	-1323.398728	154.785
Cat2⁺…H₂O	-3169.05297747	-3168.753785	-3168.818663	136.547
Cat2⁺…Me₂SO	-3645.76055126	-3645.399655	-3645.474634	157.807
Cat2+MeCN	-3225.37213906	-3225.047777	-3225.119496	150.946
Cat2+MeOH	-3208.33584886	-3208.005666	-3208.074713	145.322
Cat2⁺CHCl₃	-4511.83230102	-4511.533004	-4511.609431	160.854
Cat2+…DMF	-3341.08159936	-3340.696110	-3340.773480	162.839
Cat2+Pyridine	-3340.85891056	-3340.489890	-3340.563515	154.958
Cat2⁺…THF	-3325.02178704	-3324.623101	-3324.697059	155.657
Cat3⁺…H₂O	-549.361722782	-549.161279	-549.215885	114.928
Cat3+Me ₂ SO	-1026.06889066	-1025.807532	-1025.870812	133.184
Cat3+MeCN	-605.681394758	-605.456105	-605.518922	132.208
Cat3+MeOH	-588.643269351	-588.411677	-588.470182	123.134
Cat3⁺CHCl₃	-1892.13640412	-1891.936201	-1892.004105	142.916
Cat3⁺…DMF	-721.390298114	-721.103678	-721.171538	142.822
Cat3+Pyridine	-721.166518191	-720.896305	-720.960062	134.188
Cat3+THF	-705.328407926	-705.028736	-705.093573	136.461
Α	-384.717531131	-384.569220	-384.612192	90.443

Cat1⁺…A	-1476.10413555	-1475.682017	-1475.766144	177.059
Cat2+A	-3477.40157908	-3476.979625	-3477.063335	176.183
Cat3+A	-857.709720608	-857.386549	-857.460651	155.961
H ₂ O····A	-461.105461234	-460.928754	-460.978219	104.108
Me ₂ SO…A	-937.797733385	-937.559962	-937.622910	132.485
MeCN…A	-517.418829065	-517.217644	-517.274872	120.447
MeOH…A	-500.388179329	-500.180660	-500.234318	112.934
CHCl₃…A	-1803.89174769	-1803.715634	-1803.778537	132.391
DMF…A	-633.119409418	-632.858380	-632.920617	130.989
PyridineA	-632.896848513	-632.651220	-632.712957	129.938
THFA	-617.064590221	-616.789341	-616.849561	126.742
В	-213.685990129	-213.527504	-213.563836	76.468
Cat1+B	-1305.07030503	-1304.637993	-1304.714859	161.777
Cat2+B	-3306.37316144	-3305.940502	-3306.016805	160.592
Cat3+B	-686.680433630	-686.346826	-686.413226	139.751
H ₂ O…B	-290.078585633	-289.891661	-289.934314	89.771
Me ₂ SO…B	-766.768146356	-766.519913	-766.574831	115.586
MeCN…B	-346.388391530	-346.178258	-346.227059	102.711
MeOH…B	-329.361045750	-329.143581	-329.191133	100.083
CHCl₃…B	-1632.86500130	-1632.678440	-1632.734547	118.087
DMF…B	-462.088866185	-461.816542	-461.874375	121.721
PyridineB	-461.868720839	-461.612863	-461.667442	114.872
THFB	-446.032847610	-445.747287	-445.800717	112.454
TS	-812.085680245	-811.621371	-811.694353	153.603
Cat1⁺…TS	-1903.49670315	-1902.757157	-1902.870561	238.678
Cat2⁺…TS	-3904.80357124	-3904.062362	-3904.172320	231.425
Cat3⁺…TS	-1285.11961289	-1284.477134	-1284.579537	215.525
H ₂ O····TS	-888.492976092	-888.000243	-888.077846	163.328
Me ₂ SO…TS	-1365.17326486	-1364.618151	-1364.708493	190.140
MeCN····TS	-944.795846664	-944.277351	-944.364468	183.354
MeOH…TS	-927.774996811	-927.252184	-927.333441	171.018
Cat1+TS*	-1766.18964935	-1765.581834	-1765.678960	204.418
Cat2+TS*	-3767.48258353	-3766.876734	-3766.974469	205.700
Cat3⁺…TS*	-1147.79563290	-1147.288462	-1147.378491	189.481
Me ₂ SO…TS*	-1227.86712966	-1227.445153	-1227.521709	161.127
MeCN····TS*	-807.490975634	-807.105230	-807.178382	153.962
MeOH…TS*	-790.461448830	-790.069790	-790.143832	155.835