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1 Benchmarking of computational methods for copper(I) complexes
Semi-empirical and DFT methods were performed using Gaussian09.1 Composite methods were per-
formed using ORCA 4.2.1.2 Extended Tight Binding calculations were performed with xtb 6.3.3.3 The
University of Leeds supercomputers, ARC3 and ARC4, were used on standard nodes with 24-core Broad-
well E5-2650v4 CPUs at 2.2GHz with turbo and 128GB of memory and 40-core Intel Xeon Gold 6138
CPUs at 2.0GHz with 196GB of memory respectively.4 Complexes were optimised in the gas phase using
the default convergence criteria unless stated otherwise. XTB calculations were optimised to the vtight
criteria unless stated otherwise.

Structures for benchmarking were chosen based on three criteria which describe the active catalytic state
in the Ullmann-Goldberg reaction:

1. a mononuclear three-coordinate copper(I) centre

2. a deprotonated nitrogen nucleophile

3. either one bidentate or two monodentate ligand(s)

Only 10 structures were available in the Cambridge Structural Database (CSD) at the time of searching
(Figure S1).

Fig. S1 Chemical structures and CSD refcodes of the benchmarking complexes.

Nine of the ten structures are phosphorus-based ligands, with three out of 10 being bidentate. Due to the
lack of 3D crystal structures available for catalytic species, these were the closest to the active catalytic
state available and therefore chosen for benchmarking.
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Table S1 Structures used for benchmarking, their ligand types and X-ray structure accuracies.

CSD Ref Ligand Type Denticity R factor (%) Average σ(C-C) (Å)

AKEFOL PP Bidentate 6.70 0.011-0.030

JOHHOE NN Bidentate 5.09 0.006-0.010

JOHJAS PP Bidentate 4.24 0.001-0.005

LACNAH P, P Monodentate 6.59 0.006-0.010

NEJROL P, P Monodentate 4.78 0.001-0.005

WURJEZ P, P Monodentate 4.03 0.001-0.005

WURJID P, P Monodentate 3.11 0.001-0.005

WURJOJ P, P Monodentate 4.25 0.001-0.005

WURJUP P, P Monodentate 3.11 0.001-0.005

XOZPAG P, P Monodentate 4.61 0.001-0.005

Mean Absolute Error between optimized structures and x-ray structures from the CSD are calculated
with the following formula:

MAE =
2

N(N −1)

N−1

∑
i=1

N

∑
j>1

∣∣Ri j(Calc)−Ri j(X9ray)
∣∣ (1)

Bond lengths and bond angles measured are between the copper atom and the coordinating atoms (L1,
L2, N).

Fig. S2 Mean Average Error of bond lengths (blue) and bond angles (red) for xTB calculations on the
benchmark structure set.
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Fig. S3 Single core computational Time for xTB calculations on the benchmark structure set.

Fig. S4 Mean Average Error of bond lengths (blue) and bond angles (red) for 3c calculations on the
benchmark structure set.
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Fig. S5 Single core computational Time for 3c calculations on the benchmark structure set.

Fig. S6 Mean Average Error of bond lengths (blue) and bond angles (red) for DFT methods on the
benchmark structure set.
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Fig. S7 Single core computational time for DFT methods on the benchmark structure set.

Fig. S8 Mean Average Errors of bond lengths (blue) and bond angles (red) for different basis sets using
the TPSSh functional for the benchmark structure set.
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Fig. S9 Single core computational time for different basis sets using the TPSSh functional for the bench-
mark structure set.

Fig. S10 Comparison of mean average errors of bond lengths (blue) and bond angles (red) between the
best methods from each class on the benchmark structure set.
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Fig. S11 Comparison of single core computational time for the best methods from each class on the
benchmark structure set.

8



2 Method development with literature ligands for Ullmann-Goldberg reac-
tions

B97-3c and DLPNO-CCSD(T)/def2-TZVPP calculations were performed using ORCA 4.2.1.2 GFN2-xTB
calculations were performed with standalone xtb 6.3.3 with the vtight optimisation criteria for non-
TS optimisation steps and xtb 6.3.3 interfaced with ORCA 4.2.1 for TS optimisations and frequency
calculations with default convergence criteria.3 For TS optimisations the exact hessian was recalculated
every 5 optimisation steps. DMF was used as the solvent and caesium carbonate as the base. Structures
were generated with a custom version of molSimplify.5 Ligands were supplied as SMILES strings.

2.1 DFT calculation of the Ullmann-Goldberg catalytic cycle

Fig. S12 Oxidative Addition and Sigma metathesis pathways for the Ullmann-Goldberg reaction.

Two closed shell mechanistic pathways were investigated, oxidative-addition/reductive-elimination (TSOA)
and sigma metathesis (TSSig). This requires the generation of four structures, the two transition states
(oxidative addition is the rate-determining step for OA/RE), the active catalytic state and the precatalyst
after ligand exchange/product complex. Structures for these complexes were generated and the Gibbs
free energies were calculated.

2.2 Benchmarking ∆G‡ from B97-3c//GFN2-xTB

(a) Unscaled (b) Scaled

Fig. S13 Comparison of activation energies for TSOA and TSSig between B97-3c//GFN2-xTB and
DLNPO-CCSD(T)/def2-TZVPP//GFN2-xTB calculated energies for all literature ligands.
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To assess the error within the activation energy calculation B97-3c energies were benchmarked against
DLPNO-CCSD(T)/def2-TZVPP. 100 randomly selected ligands were taken from the ligands_lit_set, op-
timised at the GFN2-xTB level of theory and the activation energies were calculated at the B97-3c and
DLPNO-CCSD(T)/def2-TZVPP levels of theory. The comparison of energies for each method are shown
in Fig. S13. B97-3c energies were scaled to a DLPNO-CCSD(T)/def2-TZVPP energy using the equation
of the line using raw B97-3c energy, resulting in an RMSE of 3.9 kcalmol−1.

2.3 Accounting for the asymmetric geometry of TSOA

Fig. S14 Overview of asymmetric ligand flipping.

Fig. S15 Comparison of activation energies between original and flipped ligands for all asymmetric
ligands in the literature dataset.

Transition state structures for asymmetric ligands, in the case of the Ullmann-Goldberg reaction, have
two possible isomers which need to be compared to predict the total activity of the ligand (Fig. S14).
In order to assess the need to generate both structures for each transition state in the computational
workflow, all asymmetric ligands in the ligands_lit_set were used to compare the activation energies for
both isomers. The structures were optimised to a transition state using GFN2-xTB and their activation
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energies were calculated at the B97-3c level of theory. The comparison of activation energies of the
original and inverted ligand (Fig. S15). The correlation of original activation energy and activation
energy upon ligand inversion has an average difference of 2.3 kcalmol−1 (2.8 and 1.9 kcalmol−1 for TSOA
and TSSig respectively) between isomers and is within the error of the calculation (3.9 kcalmol−1). As
the Ullmann-Goldberg reaction is a symmetric reaction, only one isomer was deemed necessary. The
need to generate only one isomer significantly reduces the computational time required. For asymmetric
synthesis tasks, however, it is recommended to generate both isomers.

2.4 Protonation and deprotonation rules for ligands coordinating to Cu(I)

The protonation states of common ligand coordinating functional groups were analysed by comparing
the number of protonated and deprotonated structures available for their copper complexes in the Cam-
bridge Structural Database containing only one copper atom (Table S2). The SMARTS pattern for each
functional group which deprotonated upon coordination to copper were generated and added to the
self .remHsmarts list in ~/molSimplify/Classes/globalvars.py.

Table S2 Protonation states of common ligand functional group from the Cambridge Structural Database
and their associated pKa range in DMSO.6

Functional Group Number of entries Unchanged Deprotonated pKa6

Amine 3793 3747 46 ∼ 40

Aniline 199 165 34 25-31

Hydrazine 102 101 1 25-29

Imine 218 215 3 ∼ 31

Amide 906 14 882 17-25

Carboxylic acid 4622 18 4604 9-13

Alcohol 1169 991 178 ∼ 30

Thiol 34 1 33 5-12

Phenol 2939 99 2840 10-19

Thiophenol 68 0 68 5-12

Phosphonic acid 209 4 205 ∼ 2

Table S3 SMILES strings and associated functional group for the protonation rules used for structure
generation.

Functional Group SMILES String

Amide O CN
Carboxylic Acid O CO
Aromatic nitrogen n
Amidine N CN
N-amino nN
Phenol Oc
Thiophenol Sc
Thiol SC
N-oxide ON
Aromatic N-oxide On
Sulphonic acid OS
N-Carbene NCN
Phosphonic OP
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2.5 Literature Ligand Analysis

Table S4 Frequency of functional groups which coordinate to the copper centre in the ligands_lit_set for
bidentate ligands only. 1 group represents only one of the two coordinating functional groups, 2 groups
are both functional groups.

Functional Group Frequency 1 Group 2 Groups

alcohol 22 6 8
aldehyde 1 1 0
amide (N) 51 33 9
amide (O) 38 38 0
amine 138 48 45
carbene 7 1 3
carboxylic acid 41 39 1
ester 4 4 0
ether 1 1 0
hydrazine 13 11 1
imidazole 5 1 2
imine 41 13 14
indole 4 2 1
ketone 24 8 8
nitrile 2 0 1
N-oxide 15 13 1
oxime 10 6 2
phenol 30 24 3
phosphate 2 2 0
phosphine 12 4 4
phosphine oxide 2 2 0
pyrazole 3 1 1
pyridine 56 30 13
pyrimidine 1 1 0
pyrrole 26 24 1
selenophene 1 1 0
tetrazole 1 1 0
thiol 2 2 0
thiophene 2 2 0
thiophenol 1 1 0
triazole 1 1 0

Table S5 Number of bridging atoms between the ligand coordinating atoms for the ligands in the lig-
ands_lit_set.

Number of
Bridging Atoms

Frequency

1 2
2 187
3 73
4 9
5+ 7
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2.6 Tuning the Value of S0

Table S6 Successful identification of a correct transition state with varying values of S0 for 198 ligands
in the PIP_set_TSOA dataset. The ’Not used’ entry only uses the magnitude of the imaginary frequency
to determine if the transition state is correct.

S0 Correctly Identified
Transition States

Incorrectly Identified
Transition States

Success Rate (%)

Not used 175 23 88.4
0.20 197 1 99.4
0.25 180 18 90.9
0.30 142 56 71.7
0.33 114 84 57.6
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3 Ligand searching with CSD-CrossMiner

3.1 Building CatSD, the structural database for catalysis

The structural database is built upon CSD_541 with the Mar20, May20, Aug20 and Feb21 updates. To
enable easier searching of the database a set of annotations is used to define specific properties of each
entry in the database. The annotations refine the database to create a subset of structures that (a) are
not polymeric, (b) have no disorder, (c) for which 3D coordinates have been determined and (d) have a
maximum R-factor of 10%. This resulted in a database containing approximately 658,000 structures.

Each entry has an annotation taken directly from the CSD, using the CSD Python API, containing the
following values: (1) CSD identifier, (2) CSD Refcode, (3) database name, (4) chemical formula, (5)
R-factor, (6) is_organic and (7) is_organometallic.

The following elements were excluded from the searches: Br, Cl, I, Li, Na, K, Ca, Mg, Be. The maximum
molecular weight for structures was set to 500Da. The maximum rmsd between catalophore and hit
was set to 1.0. A maximum of 1 hit per structure was allowed to prevent duplicates. Any subsequent
duplicates were removed via. SMILES matching. Both three cubed packing and complete small molecules
were enabled. Only organic structures were returned.

3.2 CatSD Features

A series of features were generated to describe common coordinating functional groups in organometallic
ligands. All queries were combined into a single general feature catsd_coordinating_atom_general, the
SMARTS queries are summarised in Table S7. Features were also separated into individual functional
groups to enable more refined searching. The features were indexed into CatSD to enable searching
the CSD with these features. These features can be added to a catalophore to define the location and
properties of a coordinating atom within a ligand. Standard CSD-CrossMiner features can be used to
define additional properties such as aromatic rings, heavy atoms and hydrogen bonding.

14



Table S7 Features used in the CatSD coordinating_atom_general feature.

Number SMARTS Definition Base
Index

Geometry Functional
Group

1 [#6](-[#6])(-[#6]=[#6](-[#6])-[#8-
])=[#8]

5 6 trigonal 2,5-diketone

2 [#8-]-[#6] 0 tetrahedral alcohol

3 [#8H1]-[#6X4] 0 tetrahedral alcohol

4 [#1][#8H1]-[#6X4] 0 linear_nb alcohol

5 [#8X1]=[#6](-[#6;#7])(-[#7]) 0 trigonal amide

6 [#7X2]-[#6](=[#8]) 0 trigonal cyclic amide

7 [#1][#7X3H2]-[#6](=[#8]) 0 tetrahedral primary
amide

8 [NX3H2](-[C]([!#8;!#7])([!#8;!#7])) 0 tetrahedral primary
amide

9 [#1][#7X3H1]-[#6](=[#8]) 0 linear_nb secondary
amide

10 [NX3H2](-[C]([!#8;!#7])([!#8;!#7])) 0 tetrahedral secondary
amide

11 [NX3H0](-[C]([!#8;!#7])([!#8;!#7]))(-
[C]([!#8;!#7])([!#8;!#7]))-
[C]([!#8;!#7])([!#8;!#7])

0 tetrahedral tertiary amide

12 [#1][NX3H2](-[c]([!#8;!#7])([!#8;!#7])) 0 linear_nb analine

13 [#1][NX3H2](-[c]([!#8])([!#8])) 0 linear_nb analine

14 n-[#1] 0 linear_nb aromatic ni-
trogen

15 n 0 trigonal aromatic ni-
trogen

16 [#7]=[#7][#6] 1 trigonal azo

17 [#7]=[#7][#6] 0 tetrahedral azo

18 [#8H1][#6]=[#8] 0 trigonal carboxylic
acid

19 [#1][#8H1][#6]=[#8] 0 linear_nb carboxylic
acid

20 [#1][#8H1][#6]=[#8] 3 trigonal carboxylic
acid

21 [#8X1][#6]=[#8] 2 trigonal carboxylic
acid

22 [#8X1][#6]=[#8] 0 tetrahedral carboxylic
acid

23 [#6](-[#6])(-[#8]-[#6])=[#8] 4 trigonal ester

24 [#7]=[#6]-[#7][#1] 3 linear_nb imidazole

25 [#6;#1;#8;#7;#16][#7X2]=[#6] 1 trigonal imine

26 [#6]=[#7X3](-[#6;#1;#8;#7;#16])-[#1] 3 linear_nb imine

27 [#6]=[#7]-[#6] 1 trigonal imine
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Continuation of Table S7

Number SMARTS Definition Base
Index

Geometry Functional
Group

28 [#6]#[#7]-[#6] 0 linear isocyano

29 [#8X1]=[#6]([#6])([#6]) 0 trigonal ketone

30 [#8-]-[#7]-[!#8] 0 trigonal n-oxide

31 [#1]-[#8]-[#7]=[#6] 0 linear_nb oxime

32 [#8-]-[#7]=[#6] 0 tetrahedral oxime

33 [#1]-[#8]-[#7]=[#6] 1 tetrahedral oxime

34 HOc 1 tetrahedral phenol

35 HOc 0 linear_nb phenol

36 [PX3](-[#8H0][#6])(-[#8H0][#6])-
[#8H0][#6]

0 tetrahedral phosphate es-
ter

37 [PX3](-[#6;#7])(-[#6;#7])-[#6;#7] 0 tetrahedral phosphine

38 [#7X2H1]=[#6] 0 tetrahedral primary imine

39 [#7][#7][#1] 2 linear_nb pyrazole

40 c-[#7](-[#1])-(c) 2 linear_nb pyrrole

41 c[nX2]c 1 trigonal aromatic ni-
trogen ring

42 [#16-]-[#6] 0 tetrahedral thiol

43 [#16H1]-[#6X4] 0 tetrahedral thiol

44 [#1][#16H1]-[#6X4] 0 linear_nb thiol

45 HSc 1 tetrahedral thiophenol

46 HSc 0 linear_nb thiophenol

47 [NX3H2]([#6]([!#8;!#7])([!#8;!#7])) 0 tetrahedral primary
amine

48 [NX3H1]([#6]([!#8;!#7])([!#8;!#7]))
([#6]([!#8;!#7])([!#8;!#7]))

0 tetrahedral secondary
amine

49 [NX3H0](-[#6]([!#8;!#7])([!#8;!#7]))(-
[#6]([!#8;!#7])([!#8;!#7]))-
[#6]([!#8;!#7])([!#8;!#7])

0 tetrahedral tertiary amine
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3.3 Generation of Catalophores

Catalophores were generated using the CSD-CrossMiner software through the GUI. Reference struc-
tures were generated for each transition state (TSOA and TSSig) at the GFN2-xTB level of theory using
3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) as the ligand, iodobenzene as the substrate and the
nucleophile of interest. Transition states were confirmed by visualisation of the imaginary frequency.
The TSOA reference structure was used to generate the catalophore as it is more sterically demanding
around the copper centre. For each nucleophile, the TSOA reference structure was imported into CSD-
CrossMiner and the CatSD feature database was loaded. catsd_coordinating_atom_general features were
placed on each TMPHEN nitrogen atom with a tolerance of 0.75Å and the projected sphere was placed
on top of the copper atom. heavy_atom features were placed on the two bridging carbon atoms with a
tolerance of 0.75Å and the features were constrained to be intramolecular (Fig. S16).

Fig. S16 Example definition of ligand coordination in CSD-CrossMiner.

To define the substrate sites excluded volumes were placed on every atom of the substrates and the
copper atom. The tolerance of the excluded volumes were set to the van der Waals radii of the base
atom. (Fig. S17, S18). A smaller tolerance of 1.5Å was used for copper to allow for coordinating atoms
to occupy the space around the copper, while also preventing ligand atoms from occupying the space of
the metal.
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Fig. S17 Example definition of a full catalophore in CSD-CrossMiner including substrate definition.

Fig. S18 Example definition of a full catalophore in CSD-CrossMiner including substrate definition with
spacefill.

The catalophore was saved as a .cm file. Searching CatSD is only possible via the CSD-PythonAPI, the
search script is provided in the provided Zenodo repository. Note: A CSD-Discovery license is required
to use both CSD-CrossMiner and the search script through the CSD-PythonAPI.
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3.4 Search Settings

The script supports the following arguments to adjust the search procedure:

-n, --name

The name of the search, which will be applied as a prefix to all output files. Value=str.

-d, --database

The feature database to search. The CatSD feature database should be used. The value should be a file
path to the location of the feature database, e.g. ’./CatSD.feat’ if the feature database is in the same
folder as the search script. If no feature database is supplied the script will default to using the standard
CSD-CrossMiner feature database.

-c, --catalophore

The catalophore file, e.g. ’example_catalophore.cm’. Values include the text string of the name of the
catalophore file or the file path of the catalophore file.

-m, --max-hit-structures

The maximum number of results to return from a search. Default=50000. Value=int.

-r, --rmsd

The maximum value of the rmsd between the catalophore and the hit structures. Default=1. Value=float.

-w, --max-molecular-weight

The maximum molecular weight of the hit structures. Default=500. Value=int.

-t, --threads

The number of CPU threads to use for the search. Default=4. Value=int. An example input is shown
below:

python cm_search.py -n "example_search" -c "example_catalophore.cm"
-d "./CatSD.feat" -t 8 -m 10000

This will search the CatSD feature database using the ’example_catalophore’ catalophore with a maxi-
mum number of 10,000 hit structures using 8 threads and providing output files with the prefix ’exam-
ple_search’. Further search refinement can be used to alter the search procedure by modification of the
python script. The following settings are used by default:

searcher.settings.max_hits_per_structure = 1
searcher.settings.three_cubed_packing = True
searcher.settings.complete_small_molecules = True

By default, the script only returns a maximum of one hit per structure. For some use cases, such as
comparing coordinating sites within the same ligand, this may not be desirable and should be either
increased or removed. Three cubed packing (3x3x3 packing) is enabled, which restricts the search to 26
unit cells around the central unit cell. This allows for symmetry-related copies of the feature points to be
considered for a small molecule crystal structure that matches. Complete small molecules is also enabled,
this ensures that the entire molecule is returned and not just the section that is within the catalophore
bounding sphere. Additional search settings can be found in the CSD-PythonAPI documentation.7

3.4.1 Annotation Filters

Hit structures can be filtered based on the annotations present in the feature database in two ways. First,
the annotation can be defined in the catalophore file. Second, the annotation filter can be applied within
the search script. Annotation filtering is a textual filtering rule that must be defined within the search
query, using values that are present within the feature database. An annotation filter consists of a ’key’
and a ’value’, where the key corresponds to the annotation name and the value corresponds to the value
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for each structure for that annotation. Below is an example of how to apply an annotation filter within
the script.

model.add_feature(Pharmacophore.AnnotationFilter(’is_organic’, ’True’))

This will return only organic structures from within the database. Custom annotations can be used with
custom databases to enable personalised filtering of hits.

3.4.2 Structure Filters

Hits can also be filtered based on chemical structure. Structural filtering is useful in cases where the
presence of a certain element in a ligand could potentially lead to prominent side reactions.

Elements which the user wishes to exclude from the search hits can be defined in the following line.
Elements must be defined using their atomic symbol.

not_elements = [’Br’, ’Cl’, ’I’, ’Li’, ’Na’, ’K’, ’Ca’, ’Mg’, ’Be’]

It is also useful to be able to set a limit for the molecular weight of returned hit structures. Therefore, a
molecular weight limit can be applied/adjusted using the −w keyword when running the search.

The catalophore searches were conducted using the CSD-PythonAPI with a maximum molecular weight
of 500 Da, a maximum root-mean-square-deviation (RMSD) in geometry between catalophore and the
hit of 1,8,9 with Br, Cl, I, Li, Na, K, Ca, Mg, Be and transition metals excluded.7 Only organic structures
were included in the search by setting is_organic to True. SMILES code matching was used to remove
duplicate structures. 3D structures were cleaned by assigning all unknown bond types, adding all missing
hydrogens and setting all formal charges.

For piperidine, the catalophore search resulted in 26022 total hits, 14483 of which were unique. For
2-pyrrolidinone, the catalophore search resulted in 33780 total hits, 18886 of which were unique. In-
dexes of the coordinating atoms were automatically identified from the hit structure by matching the
catsd_coordinating_atom_general feature, used to define the coordinating atoms, to the base atom, with
a tolerance of 0.1Å for the x, y and z coordinated, and exported for use in structure generation. For
linear_nb features the matched atom is hydrogen. In this case, as the hydrogen atom is deprotonated
upon coordination to the metal centre, the atom index of the atom it is bonded to is required instead.
The bonds that the hydrogen forms are retrieved from the .mol CSD entry and the atom index of the
bonded atom extracted instead.

The results of a search are saved in the ’name.csv’ file. This file contains all of the hit structures, as their
CSD Identifiers and important information in the following format.

CSD_Identifier, Index, Chemical Name, Structure File, Coord Atoms,
Freq, rmsd

Index is a unique suffix for each CSD Identifier which is required when duplicates are not removed, to dis-
tinguish between different crystal structures or coordination modes within the same hit. Chemical Name
is the chemical name of the hit structure. Structure File is the name of the .mol file that is saved from
the search. Coord Atoms are the coordinating atom indexes identified from the search and is used to
define the metal-ligand bonds in the molSimplify input files. Freq is the frequency for the ligand to be
used in the molSimplify input files. rmsd is the root mean squared deviation between the hit structure
and the catalophore.

A molSimplify .dict file is also generated containing all of the relevant data required to use the 3D
structures to generate organometallic complexes using molSimplify. The file contains the following in-
formation in the format:

CSD_Identifier, 3D structure file name, CSD_Identifier_1,
coordinating atom indexes, ’build custom custom’, ’BA’, formal charge
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Values in quotes are fixed string values. CSD_Identifier is the CSD Identifier. 3D structure file name
is the name of the ligand .mol file saved from the search. CSD_Identifier_1 is a unique name for each
ligand and cannot be the same as CSD_Identifier. The same suffix is used as in the .csv Index. By default
_1 is used as a suffix if there are no duplicate structures. If duplicate removal is turned off the suffix
_X, where X is an integer, is used for structures with the same CSD Identifier. coordinating atom indexes
are the atom indexes of the coordinating atoms extracted from the CSD-CrossMiner search and are used
to form the bonds between the ligand and the metal centre. ’ build custom custom’ tells molSimplify
that the ligand is used to build a custom complex. ’BA’ is the type of force field optimization to use
by default when using the ligand to build a complex. formal charge is the charge of the ligand and
is used to calculate the total charge of the output complex. All hit structures are saved locally in the
3D .mol format. The resulting ligand sets were named ligands_CSD_PIP_set and ligands_CSD_PYR_set
respectively.
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4 High-throughput B97-3c//GFN2-xTB calculations of ∆G‡ with different
datasets

All automation scripts and data analysis is performed using Python 3. Organometallic structure genera-
tion is performed with a customised version of the molSimplify python package (version 1.2.7-alpha).5

This workflow is only available on Linux due to software restrictions.

B97-3c calculations were performed using ORCA 4.2.1 with the TightSCF and SlowConv convergence
criteria.2 For piperidine, GFN2-xTB calculations were performed with standalone xtb 6.3.3 with the tight
optimisation criteria for non-TS optimisation steps and xtb 6.3.3 interfaced with ORCA 4.2.1 for TS
optimisations and frequency calculations with default convergence criteria.3 For 2-pyrrolidinone, GFN2-
xTB calculations were performed with xtb 6.3.3 interfaced with ORCA 4.2.1 for all calculations with
the TightOpt criteria for non-TS optimisations and the default convergence criteria for TS and frequency
calculations.3 All TS calculations recalculate the hessian every 5 optimisation steps. All calculations use
4 CPU cores and 4GB of RAM. DMF was used as the solvent and caesium carbonate as the base.

Fig. S19 Workflow for the prediction of activation energies

4.1 Automated building of structures of Cu(I) complexes from ligands with mol-
Simplify

4.1.1 Generation of stable/intermediate structures

Organometallic complexes are generated in an automated manner using the molSimplify Python toolkit.5

For each organometallic complex in a mechanistic pathway the metal centre including oxidation state
and spin (in most cases), coordination number, and geometry is constant between complexes in the same
step. This creates a template structure where only the ligand(s) needs to be adjusted for each structure.
The ligand(s) and their frequency in the complex can then be defined for each unique ligand, the values
of which depend on the ligand denticity or requirements for the final complex (additional fixed ligands).
Any ligand that is required in every complex (fixed) can be included within the template. MolSimplify
generates the charge of the complex automatically using openbabel.10 In cases where a ligand must be
deprotonated upon coordination to the metal centre, deprotonation is done automatically using a set of
deprotonation rules which use SMILES matching to match functional groups. The deprotonation rules
can be customised based on the user’s needs. Structures can also be optimised with a force field to
clean up the structures both before and after ligand addition. An example molSimplify input file for
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the generation of the active catalytic species, which is a stable three-coordinate Cu(I) complex with one
bidentate ligand and one deprotonated nucleophile is shown below.

-name AADMPY10_CuLpyr_1
-core copper
-oxstate I
-coord 3
-geometry tpl
-lig AADMPY10, pyrrolidinone
-ligocc 1, 1
-spin 1
-ff uff
-ffoption ba
-keepHs auto, False
-ligalign true
-skipANN true

The file contains all of the relevant information regarding the complex to be generated, including infor-
mation about the metal centre, the structure of the ligands, how to deprotonate the ligands and whether
to clean up the structure using a force field. Let’s break down each line.

-name AADMPY10_CuLpyr_1

The −name line defines the name of the structure to be used in the output files. For example, the above
example will output the structure as a .xyz file to the location ./AADMPY10_CuLpyr_1/AADMPY10_-
CuLpyr_1/AADMPY10_CuLpyr_1.xyz. This value should contain all of the relevant information required
to identify the complex. This provides a file structure where all of the complexes are separated allowing
for easier handling of computations and analysis.

-core copper
-oxstate I
-spin 1

The metal centre is defined using the above terms. −core states the element to be used as the metal
centre. The value can either be the name of the element or the atomic symbol (e.g. copper, cu, iron, fe).
The oxidation state of the metal is defined with the −oxstate keyword. Values use roman numerals (e.g.
I, IV, V) for positive oxidation states or negative numbers (-1, -2, ...) for negative oxidation states. Finally,
the spin of the metal centre is defined with the −spin keyword and its value is the spin multiplicity of
the metal centre (e.g. 1 - singlet, 2 - doublet, 3 - triplet).

-coord 3
-geometry tpl

To define the geometry of the complex the following keywords are used. −coord defines the coordination
number of the complex (number of bonds between the metal centre and ligands). −geometry defines
the geometry of the complex (e.g. tpl - trigonal planar). Custom geometries can be used if required,
please see the official molSimplify documentation for instructions.5

-lig AADMPY10, pyrrolidinone
-ligocc 1, 1

Next, the ligand(s) to be added to the metal are defined. −lig contains the names of the ligands to
be added. The names defined here are looked up from the ligands. dict file located in the default mol-
Simplify folder which is by default located at ~/molSimplify/Ligands/. The CSD-CrossMiner search
script generates a *.dict (where * is the name of the search) file containing all of the relevant val-
ues for each ligand from the CSD. The contents of which must be copied directly into the default
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ligands. dict file. 3D structure files exported from the CSD-CrossMiner search must also be copied to
the ~/molSimplify/Ligands/ folder.

The −ligocc keyword defines the frequency of each ligand in the same order they are stated in −lig. In
this example, AADMPY10 is a bidentate ligand and therefore only one is required for the trigonal planar
complex along with one nucleophile. If AADMPY10 was a monodentate ligand −ligocc 2, 1 would be
the correct values to include two monodentate ligands and one nucleophile to fill all coordination sites.

-lig AADMPY10.mol, C1CC(=O)NC1
-ligocc 1, 1
-smicat [2, 19], [4]

Structures can also be generated from the 3D structure files located in the same folder as the input files
by defining the file name of the ligand 3D structure (e.g. AADMPY10.mol) or by SMILES string and the
indexes of the coordinating atoms (e.g. [2, 19]) in the SMILES string. Atom indexes must be enclosed
in square brackets for each ligand and separated by a comma using the −smicat keyword. The indexes
of the coordinating atoms must be defined for every explicitly defined file/SMILES string.

-ff uff
-ffoption ba

The complex can be cleaned up using a force field at several stages during structure generation. −ff
defines the force field to be used. For organometallic structures, we recommend the Univeral Force Field
(UFF). −ffoption defines when the structure is optimised. b optimises the ligands before they are added
to the metal centre. This is only recommended when using SMILES strings. a optimises the structure
after the ligands have been added. Both options can be used together (ba), which will optimise the
ligands before addition and the complex after all ligands are added.

-keepHs auto, False

It is common that upon coordination to a metal, the ligand is deprotonated. In these cases, hydrogen
atoms need to be removed from the starting 3D structure of the ligand. This can be done using the
−keepHs keyword. In order to deprotonate the ligand, for example, the active catalytic state in the
Ullmann-Goldberg reaction has a deprotonated nucleophile, the False value can be used. To keep all
hydrogen atoms use the True value. Custom deprotonation rules can be used for deprotonation for a
large range of ligands containing a variety of functional groups. This can be achieved using the auto
value which uses SMARTS matching to deprotonate matching functional groups. Custom deprotonation
rules can be defined by altering the self .remHsmarts line in the ~/molSimplify/Classes/globalvars.py
file by replacing the list of SMARTS strings with a user-defined list.

-ligalign true

The −ligalign keyword is used to call the ligand alignment tool. This ensures that the ligands are added
to the metal in order of steric bulk. This improves the structures generated as adding bulky ligands last
can often lead to them not having enough space causing incorrect structures or failure of the program.
Possible values are true and false .

-skipANN true

The −skipANN keyword is used to call the use of ANN-calculated bond lengths. This is only supported
by molSimplify for specific elements and geometries. Ensure that the metal and geometry you are using
are supported otherwise it can be turned off using the true value to save computational time.

Structures are generated automatically with the command:

molsimplify -i {input_file}

To generate all structures instead of just one, bash can be used to loop over all molSimplify input files:
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for f in *.inp; do
molsimplify -i {f};

done

The calculated charge and spin values for the complex are output to the terachem_input file and are
important for the generation of computational input files.

4.1.2 Generation of transition state structures

Transition state structures are much harder to generate from scratch due to the non-standard bond
lengths and bond angles present in the transition state. To generate a good starting structure for a
transition state calculation the ligand replacement tool in molSimplify is used to replace the ligand in
a transition state template with the ligands retrieved from CSD-CrossMiner, or from a SMILES string or
other 3D structure file (e.g. .xyz or .mol).5

Fig. S20 Example transition state core.

Structures are built from a template structure that uses a ’simple’ and ’common’ ligand as a base. The
template should be an optimised transition state of the transition state of interest. This structure should
be optimised at the same level of theory as the computational calculations to be employed for the entire
ligand dataset. An example ’core’ is shown in Fig. S20 for the oxidative-addition transition state for
2-pyrrolidinone and iodobenzene using 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) as the base
ligand. An example input file for automated ligand replacement with molSimplify is shown below.
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-name AADMPY10_TSOA_pyr_1
-core tsoa_pyr
-oxstate 0
-spin 1
-replig true
-lig AADMPY10
-ligocc 1
-ccatoms 6,15
-ligloc true
-ligalign true
-keepHs auto
-ffoption c
-skipANN true

The input file has several differences compared to the stable intermediates. Let’s break down each line.

-name AADMPY10_TSOA_pyr_1
-ligalign true
-skipANN true

The above lines are the same as the stable/intermediate structure generation.

-core tsoa_pyr
-oxstate 0
-spin 1

Instead of a metal centre −core defines the name of the transition state template. This is the structure of
the optimised transition state to be used as a template for ligand replacement. The structure file should
be placed in the ~/molSimplify/Cores/ folder and an entry added to the cores. dict file containing the
following information in the following format: ’alias’:’name of the XYZ file’,’indexes of the coordinating
atoms’, ’maximum denticity’. For the oxidative-addition transition state for 2-pyrrolidinone, where the
structures in contained in TSOA_PYR.xyz, the entry is ’tsoa_pyr:TSOA_PYR.xyz,6 15,6’. Where atom
indexes 6 and 15 are the indexes of the two TMPHEN nitrogen atoms and the core has a maximum
denticity of 6. The −oxstate keyword is the oxidation state of the entire core. In this example the metal
centre is copper(I) and is bound to a deprotonated nucleophile of charge, -1, and a neutral ligand so the
core has an oxidation state of 0. −spin is the spin of the core.

-replig true
-lig AADMPY10
-ligocc 1

In order to enable ligand replacement the −replig true command is required. The ligand to be added
is defined as −lig ’ ligand ’ . As with the stable complexes the ligand can be defined as a 3D structure
from the ligands.dict file or be defined as a 3D structure file in the current folder or a SMILES string.
The ligand coordinating atoms are taken directly from the ligands.dict file. When using a structure not
defined in ligands. dict, e.g. a SMILES string, the −smicat keyword should be used to define the indexes
of the coordinating atoms as described for intermediate structures. The number of each ligand is defined
using −ligocc ’ frequency’.

-ccatoms 6,15

−ccatoms defines the atom indexes of the atoms in the ligand to be replaced in the core which coordi-
nates to the metal centre. −ccatoms 6,15 refers to the two nitrogen atoms in the TMPHEN ligand in the
core.

-ligloc true

26



The −ligloc keyword enforces ligand location. This ensures that the ligand is placed in the correct
position around the metal centre.

-keepHs auto

As in the stable complexes −keepHs is used to deprotonate the ligand structures. As only the ligand is
added to the structure only auto need to be used if using custom deprotonation rules. true and false can
be used if no deprotonation or forced deprotonation is required respectively.

-ffoption c

In order to maintain the transition state mode in structure generation both force field options a new
−ffoption c has been implemented. c stands for core-constrained and freezes all the atoms in the core,
resulting in only the ligand being optimised. c can be used alongside b as b does not optimise the core,
only the ligand before addition.

Table S8 Success rate for different force field optimization methods for transition state generation for
the Ullmann-Goldberg reaction, (TSOA: oxidative-addition, TSSig: sigma-metathesis) for all ligands in
ligands_lit_set

Success Rates Before (b) Core (c) Before + Core (bc) No Force Field

TSOA 71% 87% 86% 68%
TSSig 82% 93% 93% 79%
Total 76% 90% 90% 74%

Table S8 shows the success rate for each force field option for the generation of two transition states
(TSOA and TSSig). Ligands were added to the structure via SMILES string. Using core-constrained
optimization improves the success rate of structure generation by ∼15% compared to using no force field
and before optimization. Using both before and core-constrained optimization offers little advantage
compared to just core-constrained force field optimization but comes at an additional computational
cost from the additional force field optimisation step.

4.1.3 Correction of Coordinating Atom Indexes

Due to the deprotonation of some ligands during complex generation, the atom indexes of the coordi-
nating atoms in the ligand may be different from those extracted from CSD-CrossMiner. This is due to
the removal of the hydrogens in the atom lists. The location at which the hydrogens were present in the
atom list determines whether correction of these indexes is required. Correction of the atom indexes is
required for the correct analysis of these atoms when extracting specific properties from computational
output files. To correct the indexes of these atoms the following method is employed:

1. The atom lists for the CuLI and ligand is read from their respective .xyz/.mol files.

2. The Cu and I atoms are removed from the CuLI complex atom list.

3. The lists of atoms from the CuLI complex and the free ligand are compared.

The complex atom list is iterated through and the atomic symbol is compared to the free ligand atom list.
When a miss-match is found the index (n) is recorded and then compared against the next item (n +
number of miss-matched items) in the list. If the index of the miss-matched item is greater than the index
of the coordinating atoms no adjustments are needed. If the index of the miss-matched item is before the
index of the coordinating atom a hydrogen has been removed. Therefore, the coordinating atom index
is adjusted based on the number of miss-matched indexes lower than the coordinating atom index. This
process fails if a hydrogen has been removed from a section of an atom list containing multiple hydrogen
atoms. In this case, the following process is employed:

For each atom at location (n) in the list, the list is propagated forward to find the length of the section
in the list with the same repeating atomic symbol. This process is done for both structures. The lengths
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of the repeating sections are then compared, if they are not equal then the deprotonated hydrogen
was present in that section of the atom list. The starting index of the section containing the removed
hydrogen is then compared to the index of the coordinating atoms. The index is then adjusted using the
same comparison method.

4.2 Automated generation of GFN2-xTB and B97-3c input files

Computational input files are generated automatically using Python. The script to generate these input
files is provided and can be modified to use custom parameters or change the method used. The script
must in run in the folder with the .xyz file generated by molSimplify. This can be done on scale using
a bash script to loop through each folder. ORCA input files use the .xyz file to obtain the coordinates of
the structures this allows for easy chaining between calculations so only one input file generation step
is required. For example the name of the output .xyz file of the optimisation step is predictable and
therefore can be placed in the frequency and energy input file before the calculation is run. Charge and
spin data is obtained from the terachem_input file created by molSimplify and is automatically extracted
and added to the ORCA input files. The folder can then be copied to a HPC to run the calculations or run
locally.

4.3 Automated extraction of computational results

4.3.1 Automated screening of failed B97-3c//GFN2-xTB calculations

In order to validate the structure of the transition state a modified version of the TS vetting requirements
presented by Jacobsen et al. is used.11 Structures are automatically tested by running the ts_check.py
script. This script requires the .xyz file for the optimisation step and the frequency output file. This
script will iterate through each folder and check that intermediate structures are at a minimum and that
transition state structures meet all of the following three criteria: i) exactly one imaginary frequency of
the hessian. ii) the TS active bond (bond being broken or formed) must be of an intermediate length:

1.7 ≥
ri j

(rcov
i + rcov

j )
> 1.0 (2)

where ri j is the bond length between atoms i and j and rcov
i and rcov

j are the covalent radii of atoms i and
j. iii) the eigenvector corresponding to the imaginary frequency should have motion along one of the TS
active bond stretching modes:

∣∣∣vstretch
i · vts

∣∣∣≥ S0 (3)

where vstretch
i is the eigenvector of the imaginary frequency, vstretch

i is the unit vector of the stretching
mode of bond i and S0 is the amount of overlap between the two vectors. S0 is a constant of default
value 0.33. The value of S0 needs to be tuned depending on the type of transition state. Transition states
which are not a simple bond stretch along the TS active bonds are not well described with an S0 value
of 0.33. For example, in transition states possessing a bend-like character, commonly observed in some
oxidative additions, tuning the value of S0 is required.

An output .csv file is produced containing a summary of each structure. The script can be adjusted to
change the tolerances. While the script is written for this reaction only it can be adjusted for other
reaction types if required.

4.3.2 Automated extraction of ∆G‡ from computational output files

Activation energies are calculated using Python (Energy_Analysis_CrossMiner.py). The script iterates
through each folder and calculates ∆G‡ for each ligand and transition state. Eel is taken from the _-
energy.out file and the vibrational correction, Gcorrection is taken from the frequency output. The Gibbs
free energy is then calculated with the following formula:
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G0 = Eel(B97−3c)+Gcorrection(GFN2− xT B) (4)

Additive (e.g. CsCO3, HCO3) energies are taken from a database. The activation energy of each pathway
was calculated as the difference between the Gibbs free energy of the transition state and the lowest
energy intermediate structure. Relative energies were calculated relative to the CuLI complex.

EA =
n

∑
1

Gproducts −
n

∑
1

Greactants (5)

The energy is converted from Eh to kcalmol−1 and output to a .csv file.

4.3.3 Automated extraction of descriptors from computational output files

Steric and electronic descriptors are calculated from the computational output files. Extraction of de-
scriptors is performed using Python 3 with the morfeus package12 for steric descriptors and a customised
version of the cclib package (version 1.7.1)13 with expanded functionality for the extraction of additional
electronic data from ORCA output files. The morfeus package calculates properties for monodentate lig-
ands by default. To ensure Cone Angle and Sterimol parameters (B1, B5 and L) are calculated correctly
for bidentate ligands a dummy hydrogen atom is placed at the midpoint of the two ligand coordinating
atoms. The indexes of the two coordinating atoms, L1 and L2, define the xy and z planes. For Buried
Volume, the substrates were removed from the complex to ensure that only the Buried Volume of the
ligand is calculated. Buried Volumes were calculated at 3.5Å 5Å and 7Å with hydrogen atoms, excluding
the dummy atom, included. For descriptors describing a change in length or angle, the difference is
taken between the transition state and the CuLI intermediate. Descriptors are saved in a .csv file.

5 Machine Learning

5.1 Descriptors and descriptors selection

Machine learning models were created using the scikit-learn module with Python 3.14 Hyperparameters
were optimised using the optuna Python module.15 DFT methods used in the machine learning electronic
descriptor calculations were performed using ORCA 5.0.1, all methods use D4 dispersion correction and
DMF as the solvent.16 The TightSCF and SlowConv convergence criteria were used in all cases.

5.1.1 List of initial descriptors and their sources

All calculated descriptors for each of the four datasets are available as separate .csv files in the provided
Zenodo repository.
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5.1.1.1 Transition-state-dependent descriptors

Table S9 Full list of descriptors and their source. Entries highlighted in red and blue are for TSOA and
TSSig only respectively. Descriptors 25-31 are extracted for the Cu, nucleophile N, ligand coordinating
atom 1 (L1), ligand coordinating atom 2 (L2) and the iodobenzene C and I atoms. For 2-pyrrolidinone
the amide C and O atoms are also included for the TSSig transition state. No d-orbitals were extracted
for the nucleophile nitrogen.

No. Descriptor Source Description

1 Bite_Angle Python Ligand bite angle (°)
2 D_Bite_Angle Python Change in bite angle from the Cu-I intermedi-

ate to the transition state (°)
3 Cone_Angle Python Ligand Cone Angle (°)
4 Sterimol_B1 Python Smallest distance perpendicular to the Cu-

dummy vector to the edge of the ligand (Å)
5 Sterimol_B5 Python Largest distance perpendicular to the Cu-

dummy vector to the edge of the ligand (Å)
6 Sterimol_L Python Distance along the Cu-dummy vector to the

edge of the ligand (Å)
7 PC_Buried_Volume_3-5Å Python Percentage buried volume at a 3.5Å radius

(%)
8 PC_Buried_Volume_5Å Python Percentage buried volume at a 5Å radius (%)
9 PC_Buried_Volume_7Å Python Percentage buried volume at a 7Å radius (%)
10 SASA Python Solvent Accessible Surface Area (Å2)
11 HOMO_Energy ORCA Energy of the HOMO (eV)
12 LUMO_Energy ORCA Energy of the LUMO (eV)
13 Cu-Lx Python Bond distance between Cu and ligand atom x

(Å)
14 D_Cu-Lx Python Change in bond distance between Cu and lig-

and atom x between the CuLI intermediate
and transition state (Å)

15 Cu-I Python Cu-I bond distance (Å)
16 Cu-C Python Cu-C bond distance (Å)
17 Cu-N Python Cu-N bond distance (Å)
18 C-I Python C-I bond distance (Å)
19 I-C-Cu Python I-C-Cu bond angle (°)
20 N-Cu-I Python N-Cu-I bond angle (°)
21 Cu-I-C Python Cu-I-C bond angle (°)
22 I-C-N Python I-C-N bond angle (°)
23 C-N-Cu Python C-N-Cu bond angle (°)
24 C-Cu-I Python C-Cu-I bond angle (°)
25 Lowdin_Charge ORCA Lowdin atomic charge of the atom
26 Bonded_Valence ORCA Number of bonds formed by the atom
27 Atomic_Population ORCA Number of electrons localised on the atom
28 Bond_Order ORCA Number of bonds between two atoms
29 Orbital_Charge_s ORCA Orbital charge of the s orbital
30 Orbital_Charge_p and sub-

shells
ORCA Orbital charge of the p orbital and its sub-

shells
31 Orbital_Charge_d and sub-

shells
ORCA Orbital charge of the d orbital and its sub-

shells
32 Img_Freq ORCA Magnitude of the imaginary frequency (cm−1)
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5.1.1.2 Transition-state-independent descriptors

Table S10 Full list of descriptors for the TS independent descriptor sets and their source. Descriptors
are calculated from the CuLNu active catalytic state. Descriptors 15-20 were extracted for the Cu, nucle-
ophile N, ligand coordinating atom 1 (L1) and ligand coordinating atom 2 (L2) atoms.

No. Descriptor Source Description

1 Bite_Angle Python Ligand bite angle (°)
2 Cone_Angle Python Ligand Cone Angle (°)
3 Sterimol_B1 Python Smallest distance perpendicular to the Cu-

dummy vector to the edge of the ligand (Å)
4 Sterimol_B5 Python Largest distance perpendicular to the Cu-

dummy vector to the edge of the ligand (Å)
5 Sterimol_L Python Distance along the Cu-dummy vector to the

edge of the ligand (Å)
6 PC_Buried_Volume_3-5Å Python Percentage buried volume at a 3.5Å radius

(%)
7 PC_Buried_Volume_5Å Python Percentage buried volume at a 5Å radius (%)
8 PC_Buried_Volume_7Å Python Percentage buried volume at a 7Å radius (%)
9 SASA Python Solvent Accessible Surface Area (Å2)
10 HOMO_Energy ORCA Energy of the HOMO (eV)
11 LUMO_Energy ORCA Energy of the LUMO (eV)
12 Cu-Lx Python Bond distance between Cu and ligand atom x

(Å)
13 Cu-N Python Cu-N bond distance (Å)
14 Bond_Order ORCA Number of bonds between two atoms
15 Lowdin_Charge ORCA Lowdin atomic charge of the atom
16 Bonded_Valence ORCA Number of bonds formed by the atom
17 Atomic_Population ORCA Number of electrons localised on the atom
18 Orbital_Charge_s ORCA Orbital charge of the s orbital
19 Orbital_Charge_p and sub-

shells
ORCA Orbital charge of the p orbital and its sub-

shells
20 Orbital_Charge_d and sub-

shells
ORCA Orbital charge of the d orbital and its sub-

shells
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5.2 Scree and Q2 plots

(a) Scree plot. (b) Q2 plot.

Fig. S21 Exploratory factor analysis for the PIP_set_TSOA dataset.

(a) Scree plot. (b) Q2 plot.

Fig. S22 Exploratory factor analysis for the PYR_set_TSOA dataset.

(a) Scree plot. (b) Q2 plot.

Fig. S23 Exploratory factor analysis for the PIP_set_TSSig dataset.
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(a) Scree plot. (b) Q2 plot.

Fig. S24 Exploratory factor analysis for the PYR_set_TSSig dataset.

5.3 Correlation between ∆G‡ and descriptors

Table S11 Pearson’s R2 between each descriptor and activation energy for every descriptor in the PIP_-
set_TSOA, PYR_set_TSOA, PIP_set_TSSig and PYR_set_TSSig datasets.

Descriptor
R2

PIP_set_TSOA PYR_set_TSOA PIP_set_TSSig PYR_set_TSSig

Bite Angle −0.03 −0.02 −0.29 −0.10
Change in Bite Angle −0.03 0.11 −0.06 0.06
Cone Angle 0.11 0.23 −0.22 −0.02
Sterimol B1 0.02 −0.01 0.00 −0.06
Sterimol B5 −0.05 0.03 −0.11 −0.01
Sterimol L −0.09 −0.13 0.05 −0.11
PC_Buried_Volume_3-5A 0.16 0.26 −0.17 0.07
PC_Buried_Volume_5A 0.12 0.21 −0.18 0.03
PC_Buried_Volume_7A 0.04 0.09 −0.16 −0.03
SASA −0.06 −0.05 −0.09 −0.09
HOMO Energy 0.29 0.29 0.05 0.47
LUMO Energy 0.17 0.24 0.10 0.46
Cu-L1 −0.05 0.05 0.11 0.03
Cu-L2 −0.03 0.07 0.07 0.04
D_Cu-L1 0.05 −0.08 0.08 −0.04
D_Cu-L2 0.00 −0.14 0.03 −0.02
Cu-I 0.13 0.25 −0.24 0.17
Cu-N - - −0.21 0.19
Cu-C 0.32 0.16 −0.27 0.38
Cu-O - - - −0.04
C-I −0.29 −0.18 0.12 −0.18
Amide C-O - - - 0.27
Amide C-N - - - −0.32
N-Cu-I - - 0.27 −0.23
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Continuation of Table S11

Descriptor PIP_set_TSOA PYR_set_TSOA PIP_set_TSSig PYR_set_TSSig

Cu-I-C 0.35 0.15 0.07 0.33
I-C-N - - −0.23 0.04
C-N-Cu - - −0.29 −0.05
I-C-Cu 0.14 0.20 - -
C-Cu-I −0.31 −0.21 - -
Amide O-C-N - - - 0.29
Lowdin Charge (Cu) −0.14 −0.14 −0.07 −0.05
Lowdin Charge (N) - - 0.00 −0.28
Lowdin Charge (C) −0.29 −0.20 0.05 −0.32
Lowdin Charge (I) 0.30 0.17 0.10 0.03
Lowdin Charge (L1) 0.07 0.03 −0.01 −0.14
Lowdin Charge (L2) 0.09 0.02 −0.04 −0.16
Lowdin Charge (Amide C) - - - −0.18
Lowdin Charge (Amide O) - - - −0.28
Bonded Valence (Cu) −0.11 −0.03 0.12 0.00
Bonded Valence (N) - - 0.14 −0.29
Bonded Valence (C) 0.01 0.03 −0.06 0.23
Bonded Valence (I) 0.33 0.14 0.24 0.01
Bonded Valence (L1) 0.07 0.07 −0.04 −0.09
Bonded Valence (L2) 0.10 0.06 −0.06 −0.1
Bonded Valence (Amide C) - - - 0.06
Bonded Valence (Amide O) - - - −0.14
Atomic Population (Cu) −0.11 0.07 0.37 0.38
Atomic Population (N) - - −0.10 −0.20
Atomic Population (C) 0.16 0.16 0.11 −0.12
Atomic Population (I) −0.19 0.05 −0.04 0.10
Atomic Population (L1) −0.05 −0.03 −0.01 0.04
Atomic Population (L2) −0.07 −0.08 0.05 0.05
Atomic Population (Amide C) - - - −0.05
Atomic Population (Amide O) - - - 0.13
Bond Order (Cu-I) −0.28 −0.27 0.27 −0.03
Bond Order (Cu-C) −0.34 −0.15 0.03 0.06
Bond Order (C-I) 0.25 0.21 −0.20 0.21
Bond Order (Cu-N) - - 0.05 −0.30
Bond Order (Cu-L1) 0.04 0.06 −0.07 0.02
Bond Order (Cu-L2) 0.05 0.00 −0.01 0.00
Bond Order (Amide C-O) - - - −0.16
Bond Order (Amide C-N) - - - 0.23
Orbital Charge C(s) 0.31 0.10 0.13 0.11
Orbital Charge C(p) 0.26 0.20 −0.06 0.28
Orbital Charge C(pz) 0.04 0.17 −0.05 −0.02
Orbital Charge C(px) −0.02 0.13 0.03 −0.11
Orbital Charge C(py) 0.12 −0.08 −0.03 0.17
Orbital Charge N(s) - - −0.17 0.13
Orbital Charge N(p) - - 0.03 0.21
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Continuation of Table S11

Descriptor PIP_set_TSOA PYR_set_TSOA PIP_set_TSSig PYR_set_TSSig

Orbital Charge N(pz) - - 0.06 0.16
Orbital Charge N(px) - - −0.06 0.04
Orbital Charge N(py) - - 0.01 −0.17
Orbital Charge I(s) −0.39 −0.25 −0.23 −0.26
Orbital Charge I(p) −0.33 −0.20 −0.17 −0.06
Orbital Charge I(pz) −0.14 0.11 0.02 0.11
Orbital Charge I(px) −0.15 −0.11 −0.08 −0.13
Orbital Charge I(py) 0.03 −0.13 −0.03 −0.02
Orbital Charge I(d) 0.48 0.33 0.21 0.40
Orbital Charge I(dxz) 0.23 0.06 0.06 0.09
Orbital Charge I(dyz) 0.16 0.21 0.08 0.06
Orbital Charge I(dxy) 0.20 0.19 0.17 0.25
Orbital Charge I(dz2) 0.25 0.10 0.01 0.06
Orbital Charge I(dx2y2) 0.04 0.26 0.10 0.32
Orbital Charge Cu(s) 0.11 0.00 0.01 0.00
Orbital Charge Cu(p) −0.08 −0.02 0.05 −0.11
Orbital Charge Cu(pz) −0.01 −0.22 0.18 −0.20
Orbital Charge Cu(px) −0.15 −0.07 −0.09 0.06
Orbital Charge Cu(py) 0.01 0.25 −0.02 −0.02
Orbital Charge Cu(d) 0.27 0.24 0.05 0.19
Orbital Charge Cu(dxz) 0.16 0.04 0.05 0.11
Orbital Charge Cu(dyz) 0.04 0.06 −0.08 0.31
Orbital Charge Cu(dxy) −0.03 −0.11 −0.03 0.05
Orbital Charge Cu(dz2) 0.04 0.18 0.09 −0.22
Orbital Charge Cu(dx2y2) 0.05 0.06 0.10 −0.16
Orbital Charge L1(s) −0.03 −0.02 0.00 0.04
Orbital Charge L1(p) −0.03 0.00 −0.02 0.06
Orbital Charge L1(pz) −0.01 0.05 0.00 0.13
Orbital Charge L1(px) 0.03 0.02 −0.07 0.01
Orbital Charge L1(py) −0.09 −0.06 0.05 0.05
Orbital Charge L1(d) −0.09 −0.08 −0.02 0.01
Orbital Charge L1(dxz) −0.11 −0.06 0.05 0.11
Orbital Charge L1(dyz) −0.05 0.00 −0.08 0.02
Orbital Charge L1(dxy) −0.08 −0.12 −0.03 −0.04
Orbital Charge L1(dz2) −0.10 −0.01 0.00 0.08
Orbital Charge L1(dx2y2) −0.08 −0.11 −0.01 −0.05
Orbital Charge L2(s) −0.05 −0.05 0.06 0.05
Orbital Charge L2(p) −0.06 −0.04 0.04 0.08
Orbital Charge L2(pz) −0.04 0.01 0.04 0.14
Orbital Charge L2(px) 0.01 −0.04 −0.02 0.03
Orbital Charge L2(py) −0.10 −0.07 0.12 0.05
Orbital Charge L2(d) −0.08 −0.09 0.00 −0.01
Orbital Charge L2(dxz) −0.09 −0.08 0.08 0.07
Orbital Charge L2(dyz) −0.06 −0.04 −0.07 −0.01
Orbital Charge L2(dxy) −0.08 −0.11 −0.01 −0.06
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Continuation of Table S11

Descriptor PIP_set_TSOA PYR_set_TSOA PIP_set_TSSig PYR_set_TSSig

Orbital Charge L2(dz2) −0.08 −0.06 0.03 0.06
Orbital Charge L2(dx2y2) −0.07 −0.10 0.00 −0.06
Orbital Charge Amide C(s) - - - −0.23
Orbital Charge Amide C(p) - - - 0.34
Orbital Charge Amide C(pz) - - - −0.11
Orbital Charge Amide C(px) - - - −0.03
Orbital Charge Amide C(py) - - - 0.16
Orbital Charge Amide O(s) - - - −0.10
Orbital Charge Amide O(p) - - - 0.27
Orbital Charge Amide O(pz) - - - 0.12
Orbital Charge Amide O(px) - - - −0.14
Orbital Charge Amide O(py) - - - 0.19
Magnitude of the Imaginary Frequency 0.00 0.16 0.02 0.33

5.4 Initial ML models building with transition state descriptors

Eight machine learning models were employed; Multiple Linear Regression (MLR), Gaussian Process Re-
gression (GP), Artificial Neural Networks (ANN), Support Vector Machine (SVM), Partial Least Squares
(PLS), Random Forest (RF), ExtraTrees (ET) and Bagging (Bag). Default parameters were used with the
following exceptions: for GP only the Matern. RBF and RationalQuadratic kernel were used; for ANN,
n_nodes (number of nodes in the hidden layers) was optimised with the number of hidden layers varied;
for SVM the radial basis function (RBF) kernel was used with C, epsilon and gamma being optimised;
for PLS, n_components (number of components to retain after dimension reduction) was optimised; and
for RF, ET and Bag, n_estimators (number of trees) and max_depth was optimised. Machine learn-
ing was performed in Python 3 with the scikit-learn module. Prior to machine learning, all descriptors
were scaled using scikit-learn’s StandardScaler() method. Where parameters were optimised the Optuna
python package was used.15 All parameters were optimised to maximise the Coefficient of Determination
(R2).
Datasets were split into training and test sets by binning the data in intervals of 1 kcalmol−1. A propor-
tional amount of data was taken from each bin to form a training set (∼ 80% of the data) and a test set
(∼ 20% of the data). Each model was trained on the same training set and tested on the same unseen
test set.
Performance metrics are obtained by splitting the data into k groups using the scikit-learn’s KFolds
method ensuring the dataset was shuffled before splitting. Each group is used as a test set and the
remaining k−1 groups are used as the training set. After each group, the performance metrics are stored
and the model discarded. All stated uses of K-fold cross-validation use 10 folds.
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5.4.1 Initial model metrics

Table S12 Performance metrics for the machine learning models for the PIP_set_TSOA dataset.

Model R2 RMSE % within 4.0

MLR 0.39 8.64 58.8

GPR 0.25 9.70 72.9

ANN 0.45 8.55 61.4

SVM 0.33 9.14 74.4

PLS 0.44 8.31 60.1

RF 0.43 8.44 74.2

ExtraTrees 0.49 7.90 75.4

Bagging 0.41 8.56 73.1

Table S13 Performance metrics for the machine learning models for the PYR_set_TSOA dataset.

Model R2 RMSE % within 4.0

MLR 0.37 8.71 43.6

GPR 0.51 7.48 63.7

ANN 0.52 8.00 57.0

SVM 0.55 7.18 64.0

PLS 0.34 8.92 43.6

RF 0.60 6.76 64.6

ExtraTrees 0.65 6.32 66.1

Bagging 0.61 6.72 64.3

Table S14 Performance metrics for the machine learning models for the PIP_set_TSSig dataset.

Model R2 RMSE % within 4.0

MLR 0.28 6.39 67.7

GPR 0.21 6.89 77.2

ANN 0.36 6.23 73.2

SVM 0.31 6.28 80.4

PLS 0.26 6.47 70.1

RF 0.39 5.92 77.3

ExtraTrees 0.39 5.93 77.9

Bagging 0.39 5.92 77.3
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Table S15 Performance metrics for the machine learning models for the PYR_set_TSSig dataset.

Model R2 RMSE % within 4.0

MLR 0.53 6.24 56.1

GPR 0.35 7.86 62.1

ANN 0.52 6.51 63.2

SVM 0.59 5.80 67.4

PLS 0.50 6.47 55.3

RF 0.63 5.57 67.3

ExtraTrees 0.63 5.52 68.5

Bagging 0.62 5.58 67.3
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Fig. S25 Machine learning model predictions for the PIP_set_TSOA dataset.
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Fig. S26 Machine learning model predictions for the PIP_set_TSSig dataset.
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Fig. S27 Machine learning model predictions for the PYR_set_TSOA dataset.
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Fig. S28 Machine learning model predictions for the PYR_set_TSSig dataset.
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5.4.2 Descriptors trimming based on permutation and feature importance

Fig. S29 Permutation importance of the initial ExtraTrees model of the PIP_set_TSOA dataset.
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Fig. S30 Permutation importance of the initial ExtraTrees model of the PYR_set_TSOA dataset.
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Fig. S31 Permutation importance of the initial ExtraTrees model of the PIP_set_TSSig dataset.
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Fig. S32 Permutation importance of the initial ExtraTrees model of the PYR_set_TSSig dataset.
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5.4.2.1 List of Trimmed Descriptors

PIP_set_TSOA: Bite_Angle, D_Bite_Angle, Cone_Angle, Sterimol_B1, HOMO_Energy, LUMO_Energy,
Lowdin_Charge_Cu, Lowdin_Charge_C, Bonded_Valence_I, Bonded_Valence_L1, Atomic_Population_C,
Atomic_Population_L2, Bond_Order_Cu_L2, Orbital_Charge_C_pz, Orbital_Charge_I_d, Orbital_Charge_-
Cu_s, Orbital_Charge_Cu_p, Orbital_Charge_Cu_d, Orbital_Charge_L2_px, Orbital_Charge_L2_dz2.

PYR_set_TSOA: Bite_Angle, D_Bite_Angle, Cone_Angle, Sterimol_B1, HOMO_Energy, LUMO_Energy,
Lowdin_Charge_Cu, Lowdin_Charge_C, Bonded_Valence_I, Bonded_Valence_L1, Atomic_Population_C,
Atomic_Population_L2, Bond_Order_Cu_L2, Orbital_Charge_C_pz, Orbital_Charge_I_d, Orbital_Charge_-
Cu_s, Orbital_Charge_Cu_p, Orbital_Charge_Cu_d, Orbital_Charge_L1_pz, Orbital_Charge_L1_px, Or-
bital_Charge_L1_py, Orbital_Charge_L1_d, Orbital_Charge_L2_px, Orbital_Charge_L2_dz2.

PIP_set_TSSig: Bite_Angle, D_Bite_Angle, Cone_Angle, PC_Buried_Volume_35A, PC_Buried_Volume_-
7A, HOMO_Energy, LUMO_Energy, Cu-L1, Cu-N, I-C-N, C-N-Cu, Lowdin_Charge_Cu, Lowdin_Charge_N,
Lowdin_Charge_C, Lowdin_Charge_I, Bonded_Valence_I, Bonded_Valence_L1, Atomic_Population_Cu,
Atomic_Population_I, Bond_Order_Cu-I, Bond_Order_C-I, Bond_Order_Cu-N, Orbital_Charge_N_s, Or-
bital_Charge_N_pz, Orbital_Charge_N_px, Orbital_Charge_N_py, Orbital_Charge_I_s, Orbital_Charge_-
I_px, Orbital_Charge_Cu_py, Orbital_Charge_Cu_d, Orbital_Charge_L1_pz, Orbital_Charge_L1_dyz, Or-
bital_Charge_L2_pz, Orbital_Charge_L2_px, Orbital_Charge_L2_d, ImgFreq.

PYR_set_TSSig: Bite_Angle, D_Bite_Angle, PC_Buried_Volume_7A, HOMO_Energy, LUMO_Energy, Cu-
L1, Cu-L2, D_Cu-L1, D_Cu-L2, C-I, N-Cu-I, Cu-I-C, Lowdin_Charge_I, Lowdin_Charge_L1, Lowdin_-
Charge_L2, Bonded_Valence_Cu, Bonded_Valence_N, Bonded_Valence_I, Atomic_Population_Cu, Atomic_-
Population_N, Atomic_Population_I, Atomic_Population_Amide_O, Bond_Order_C-I, Bond_Order_Cu-N,
Bond_Order_Cu-L1, Bond_Order_Amide_C-N, Orbital_Charge_N_s, Orbital_Charge_I_pz, Orbital_Charge_-
I_py, Orbital_Charge_I_dxy, Orbital_Charge_I_dx2y2, Orbital_Charge_Cu_s, Orbital_Charge_Cu_d, Or-
bital_Charge_L1_pz, Orbital_Charge_L2_d, Orbital_Charge_L2_dxz, Orbital_Charge_Amide_C_s, Orbital_-
Charge_Amide_O_s, ImgFreq, Amide_C-O, Amide_O-C-N.
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5.4.3 Models with Trimmed Descriptors and Optimised Hyperparameters

Fig. S33 Machine learning models with trimmed descriptors and optimised hyperparameters for the
PIP_set_TSOA dataset.
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Fig. S34 Machine learning models with trimmed descriptors and optimised hyperparameters for the
PYR_set_TSOA dataset.
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Fig. S35 Machine learning models with trimmed descriptors and optimised hyperparameters for the
PIP_set_TSSig dataset.
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Fig. S36 Machine learning models with trimmed descriptors and optimised hyperparameters for the
PYR_set_TSSig dataset.
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Table S16 Machine learning metrics with trimmed descriptors and optimised hyperparameters for the
PIP_set_TSOA dataset.

Model R2 RMSE % within 4.0

MLR 0.49 5.85 59.5
GPR 0.57 5.65 73.9
ANN 0.43 6.54 61.6
SVM 0.64 4.81 78.7
PLS 0.49 5.86 60.1
RF 0.62 5.01 75.7
ExtraTrees 0.66 4.81 79.6
Bagging 0.63 5.00 76.6

Table S17 Machine learning metrics with trimmed descriptors and optimised hyperparameters for the
PYR_set_TSOA dataset.

Model R2 RMSE % within 4.0

MLR 0.44 6.81 50.6
GPR 0.68 5.17 68.0
ANN 0.64 5.63 66.1
SVM 0.68 5.09 71.7
PLS 0.44 6.77 51.2
RF 0.69 5.06 70.2
ExtraTrees 0.71 4.86 71.3
Bagging 0.68 5.10 70.2

Table S18 Machine learning metrics with trimmed descriptors and optimised hyperparameters for the
PIP_set_TSSig dataset.

Model R2 RMSE % within 4.0

MLR 0.32 4.97 73.7
GPR 0.45 4.49 79.7
ANN 0.41 4.95 78.1
SVM 0.47 4.41 84.7
PLS 0.32 4.98 73.8
RF 0.46 4.44 80.7
ExtraTrees 0.48 4.33 81.5
Bagging 0.47 4.39 81.0

Table S19 Machine learning metrics with trimmed descriptors and optimised hyperparameters for the
PYR_set_TSSig dataset.

Model R2 RMSE % within 4.0

MLR 0.48 6.16 55.9
GPR 0.60 5.39 66.3
ANN 0.55 5.89 65.2
SVM 0.64 5.10 71.0
PLS 0.48 6.17 55.8
RF 0.65 4.99 70.6
ExtraTrees 0.66 4.95 70.6
Bagging 0.66 4.97 70.8
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5.4.4 Permutation Importance of Trimmed Models

Fig. S37 Permutation importance of the initial trimmed model of the PIP_set_TSOA dataset.
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Fig. S38 Permutation importance of the trimmed ExtraTrees model of the PYR_set_TSOA dataset.
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Fig. S39 Permutation importance of the trimmed ExtraTrees model of the PIP_set_TSSig dataset.
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Fig. S40 Permutation importance of the trimmed ExtraTrees model of the PYR_set_TSSig dataset.
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Table S20 Ten most important descriptors with each dataset based on permutation importance analysis
of ET models

Pip_set_TSOA Pyr_set_TSOA Pip_set_TSSig Pyr_set_TSSig

Orbital_charge_I_d HOMO_energy Atomic_population_Cu HOMO_energy
HOMO_energy Orbital_charge_Cu_d Bite_angle Atomic_population_Cu
Orbital_charge_Cu_d Orbital_charge_Cu_s Orbital_charge_N_s N-Cu-I_angle
Lowdin_charge_C Orbital_charge_L1_px LUMO_energy Atomic_population_-

amide_O
D_bite_angle LUMO_energy Orbital_charge_I_s Atomic_population_N
LUMO_energy Orbital_charge_L2_px C-N-Cu_angle Orbital_charge_Cu_s
Bond_order_Cu_L2 Atomic_population_L2 Orbital_charge_Cu_d Bond_order_Cu-N
Lowdin_charge_Cu D_bite_angle HOMO_energy Cu-I-C_angle
Bonded_valence_I Lowdin_charge_Cu Cu-L1_distance Orbital_charge_amide_-

C_s
Orbital_charge_C_pz Orbital_charge_Cu_p Cone_angle Bond_order_Cu-I
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5.5 ML models building without transition state descriptors

5.5.1 Metrics of initial ML models without transition state descriptors

Fig. S41 Machine learning model predictions for the PIP_set_TSOA_NoTS dataset with optimized pa-
rameters.
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Table S21 Performance metrics for the machine learning models for the PIP_set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.22 7.24 66.7

GPR 0.15 8.07 64.3

ANN 0.08 10.59 46.6

SVM 0.35 6.56 79.6

PLS 0.23 7.13 65.2

RF 0.28 7.01 73.0

ExtraTrees 0.32 6.81 76.0

Bagging 0.28 6.96 73.6
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Fig. S42 Machine learning model predictions for the PYR_set_TSOA_NoTS dataset with optimized pa-
rameters.
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Table S22 Performance metrics for the machine learning models for the PYR_set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.59 5.86 54.8

GPR 0.55 6.17 62.6

ANN 0.53 6.98 55.1

SVM 0.67 5.16 68.1

PLS 0.56 6.03 54.2

RF 0.66 5.36 67.1

ExtraTrees 0.68 5.18 67.7

Bagging 0.65 5.40 66.8
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Fig. S43 Machine learning model predictions for the PIP_set_TSSig_NoTS dataset with optimized pa-
rameters.
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Table S23 Performance metrics for the machine learning models for the PIP_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.53 3.97 79.8

GPR 0.48 4.14 78.8

ANN 0.43 4.74 74.5

SVM 0.57 3.74 83.7

PLS 0.54 3.87 79.0

RF 0.50 4.16 83.3

ExtraTrees 0.54 3.94 82.6

Bagging 0.50 4.16 83.2
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Fig. S44 Machine learning model predictions for the PYR_set_TSSig_NoTS dataset with optimized pa-
rameters.
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Table S24 Performance metrics for the machine learning models for the PYR_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.57 5.45 66.5

GPR 0.47 6.65 64.0

ANN 0.51 6.31 61.3

SVM 0.66 4.94 75.6

PLS 0.56 5.54 68.1

RF 0.62 5.12 73.2

ExtraTrees 0.66 4.83 75.8

Bagging 0.62 5.14 73.4
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5.5.2 Transition State Independent Descriptors with Trimmed Descriptors

Fig. S45 Machine learning model predictions for the PIP_set_TSOA_NoTS dataset with optimized pa-
rameters and trimmed descriptors.
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Table S25 Performance metrics for the machine learning models for the PIP_set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.22 7.22 65.8

GPR 0.19 8.03 58.3

ANN 0.33 6.73 68.5

SVM 0.24 7.07 75.1

PLS 0.22 7.22 65.8

RF 0.28 6.99 71.2

ExtraTrees 0.29 6.95 76.3

Bagging 0.28 6.95 72.1
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Fig. S46 Machine learning model predictions for the PYR_set_TSOA_NoTS dataset with optimized pa-
rameters and trimmed descriptors.
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Table S26 Performance metrics for the machine learning models for the PYR_set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.55 5.98 52.3

GPR 0.52 6.46 58.2

ANN 0.52 6.80 55.1

SVM 0.65 5.23 66.3

PLS 0.55 5.95 52.1

RF 0.66 5.24 66.0

ExtraTrees 0.69 4.97 66.3

Bagging 0.66 5.25 65.3
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Fig. S47 Machine learning model predictions for the PIP_set_TSSig_NoTS dataset with optimized pa-
rameters and trimmed descriptors.
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Table S27 Performance metrics for the machine learning models for the PIP_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.50 4.04 77.3

GPR 0.35 4.84 74.7

ANN 0.51 4.18 80.2

SVM 0.56 3.78 82.8

PLS 0.50 4.04 77.2

RF 0.53 4.00 82.0

ExtraTrees 0.56 3.87 83.0

Bagging 0.53 3.98 82.4
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Fig. S48 Machine learning model predictions for the PYR_set_TSSig_NoTS dataset with optimized pa-
rameters and trimmed descriptors.
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Table S28 Performance metrics for the machine learning models for the PYR_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.55 5.56 65.7

GPR 0.40 7.92 62.2

ANN 0.57 5.59 71.2

SVM 0.62 5.21 73.5

PLS 0.54 5.65 66.2

RF 0.62 5.16 74.4

ExtraTrees 0.64 4.98 75.8

Bagging 0.62 5.16 73.8

5.5.3 Improving models through improved calculations of electronic descriptors

5.5.3.1 Correlation of Electronic Descriptors Between Functional and DLPNO-CCSD(T)

Orbital charges, Lowdin charges, LUMO energies and bond orders on the ligating atoms from all meth-
ods correlated well with ∆G‡ calculated with DLPNO-CCSD(T)/def2-TZVPP. A higher percentage of
HF exchange has a better correlation with DLPNO-CCSD(T)/def2-TZVPP (TPSS < TPSSh (10%) <
PBE0(20%)). This suggests that a large amount of HF exchange is required to correctly describe the
bonding between the copper centre and the coupling nitrogen atom. All other descriptors can be suffi-
ciently described without the inclusion of HF exchange. Descriptors calculated at the PBE0/def2-TZVP
level of theory provide the most accurate electronic descriptors and activation energies for the same
computational cost of the transition state calculations
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5.5.3.2 Correlation of Activation Energies for each Functional and DLPNO-CCSD(T)

Table S30 Correlation of activation energies between B97-3c and 4 other DFT methods and DLPNO-
CCSD(T) for 50 ligands. RMSE_Actual is the RMSE of the raw value of the activation energy compared
to DLPNO-CCSD(T)/def2-TZVPP. RMSE_Scaled is the RMSE of the scaled activation energy using the
equation of the line to convert to a DLPNO-CCSD(T)/def2-TZVPP energy.

TSOA Activation Energy TSSig Activation Energy

R2 RMSE_Actual RMSE_Scaled R2 RMSE_Actual RMSE_Scaled

B97-3c 0.91 5.97 3.78 0.87 8.96 3.46
PBE0 0.96 4.67 2.54 0.97 4.34 1.65
TPSS 0.88 10.01 4.30 0.88 8.87 3.33
TPSSh 0.92 8.40 3.67 0.93 7.14 2.57

Table S31 Comparison of single core computational time for the DFT energy calculations compared to
the total single core time to calculate each transition state for the machine learning datasets.

Single Core CPU time (h)

Nulceophile Transition States (TSOA+TSSig) B97-3c Energy TPSS Energy PBE0 Energy

IPip 44139 1433 3264 8384
IPyr 48319 2165 4606 11510
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5.5.3.3 PBE0 Models

Fig. S49 Machine learning models using descriptors calculated using PBE0/def2-TZVP for the PIP_set_-
TSOA_NoTS dataset.

76



Fig. S50 Machine learning models using descriptors calculated using PBE0/def2-TZVP for the PYR_set_-
TSOA_NoTS dataset.
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Fig. S51 Machine learning models using descriptors calculated using PBE0/def2-TZVP for the PIP_set_-
TSSig_NoTS dataset.
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Fig. S52 Machine learning models using descriptors calculated using PBE0/def2-TZVP for the PYR_set_-
TSSig_NoTS dataset.
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Table S32 Machine learning metrics using descriptors calculated using PBE0/def2-TZVP for the PIP_-
set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.30 6.63 71.8
GPR 0.34 6.48 71.8
ANN 0.13 9.62 47.4
SVM 0.40 6.11 82.3
PLS 0.32 6.51 73.0
RF 0.32 6.62 77.2
ExtraTrees 0.38 6.28 77.8
Bagging 0.30 6.84 77.5

Table S33 Machine learning metrics using descriptors calculated using PBE0/def2-TZVP for the PYR_-
set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.62 5.35 59.6
GPR 0.66 5.03 67.3
ANN 0.62 5.90 62.5
SVM 0.71 4.59 72.6
PLS 0.61 5.43 57.2
RF 0.67 5.00 71.7
ExtraTrees 0.71 4.68 72.9
Bagging 0.68 4.97 71.7

Table S34 Machine learning metrics using descriptors calculated using PBE0/def2-TZVP for the PIP_-
set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.65 3.99 76.1
GPR 0.71 3.66 81.8
ANN 0.60 4.58 76.0
SVM 0.69 3.78 84.6
PLS 0.63 4.12 77.2
RF 0.69 3.80 84.4
ExtraTrees 0.69 3.79 84.4
Bagging 0.69 3.83 84.4

Table S35 Machine learning metrics using descriptors calculated using PBE0/def2-TZVP for the PYR_-
set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.60 5.16 72.5
GPR 0.62 5.03 74.7
ANN 0.51 6.11 66.2
SVM 0.68 4.72 79.3
PLS 0.61 5.12 73.8
RF 0.65 4.85 77.9
ExtraTrees 0.68 4.66 78.0
Bagging 0.65 4.88 77.3
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5.5.3.4 TPSS Models

Fig. S53 Machine learning models using descriptors calculated using TPSS/def2-TZVP for the PIP_set_-
TSOA_NoTS dataset.
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Fig. S54 Machine learning models using descriptors calculated using TPSS/def2-TZVP for the PYR_set_-
TSOA_NoTS dataset.
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Fig. S55 Machine learning models using descriptors calculated using TPSS/def2-TZVP for the PIP_set_-
TSSig_NoTS dataset.

83



Fig. S56 Machine learning models using descriptors calculated using TPSS/def2-TZVP for the PYR_set_-
TSSig_NoTS dataset.
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Table S36 Machine learning metrics using descriptors calculated using TPSS/def2-TZVP for the PIP_-
set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.22 6.54 74.5
GPR 0.27 6.36 70.9
ANN 0.10 9.31 51.7
SVM 0.33 6.07 82.3
PLS 0.24 6.44 73.9
RF 0.29 6.26 77.8
ExtraTrees 0.34 6.03 80.5
Bagging 0.29 6.23 77.5

Table S37 Machine learning metrics using descriptors calculated using TPSS/def2-TZVP for the PYR_-
set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.59 5.01 64.1
GPR 0.64 4.69 69.6
ANN 0.53 6.05 63.0
SVM 0.69 4.27 75.4
PLS 0.58 5.09 62.3
RF 0.63 4.84 74.3
ExtraTrees 0.68 4.42 74.8
Bagging 0.63 4.81 74.2

Table S38 Machine learning metrics using descriptors calculated using TPSS/def2-TZVP for the PIP_-
set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.61 3.45 83.1
GPR 0.63 3.38 84.9
ANN 0.51 4.15 79.4
SVM 0.60 3.53 87.1
PLS 0.56 3.68 83.4
RF 0.59 3.58 88.1
ExtraTrees 0.62 3.46 87.8
Bagging 0.60 3.57 88.1

Table S39 Machine learning metrics using descriptors calculated using TPSS/def2-TZVP for the PYR_-
set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0

MLR 0.58 4.83 72.6
GPR 0.63 4.53 77.2
ANN 0.54 5.28 66.7
SVM 0.69 4.19 80.8
PLS 0.58 4.83 73.0
RF 0.65 4.39 78.7
ExtraTrees 0.70 4.09 80.4
Bagging 0.65 4.39 78.8
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