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1. Additional data 

To analyze the breadth of structure morphologies considered by the FEFOS predictions in 

Figure 2b, we have analyzed the distribution of space groups of the respective sets of oxides to 

determine whether the conditioned oxides span a more restricted set of morphologies than the 

structures which are filtered based on morphology. The resulting analyses are shown in Figure S1.  

 

 

Figure S1. Histogram of space group numbers for each class of oxide considered with assumed 

overall oxidation numbers of a) 2, b) 3 and c) 4. Counts in blue represent those oxides which were 

deemed not suitable for formation energy prediction by FEFOS since the oxide did not have the 

correct coordinations of oxygen and non-oxygen atoms. The counts in blue make up all the points 

that are plotted in Figure 2b for each class of oxide. 

 

0 50 100 150 200
Space group number

0

10

20

30

40

50

60

70

80

Co
un

t

A1-zBzO A1-zBzO1.5

A1-zBzO2

0 50 100 150 200
Space group number

0

10

20

30

40

50

60

70

80

0 50 100 150 200
Space group number

0

10

20

30

40

50

60

70

80

Co
un

t

Not in Fig. 2b

In Fig. 2b



S3 
 

2. Quadratic equation fitting  

To construct the datapoints, we set the reference 0 of formation energy to the 𝛥𝐸!(#$!) for the 

appropriate oxide. We then calculate the difference between 𝛥𝐸!(#$!) and all the ground state 

formation energies for every other stoichiometry. If the oxygen content of the oxide is higher than 

it is for MOy it may be fit through to form 𝑓&',#$!, while if it is lower, it may be fit through to 

form 𝑓)*+,#$!. The 𝑥-axis of the datapoints we fit through is determined by the stoichiometry, so 

that for a perspective MOc the 𝑥-axis value would be set to 2𝑐. If there is a formation energy which 

is lower than the reference formation energy MOy, we simply fit through this point such that the 

parabola that is formed is symmetric about that minimum. 

If the fitted parabola is concave, this is unphysical, since it implies that in the limit of 𝑥, oxidation 

state change, going to infinity, the formation energy would tend to negative infinity. Therefore, we 

delete the coefficient 𝑎, and preserve the structure of the parabola close to 𝑥 = 0.  

If we cannot fit a quadratic equation because there is not enough data, we simply define linear 

equations: 

𝑓)*+,-$! =
𝛥𝐸!(-$!)𝑥
𝑜𝑥. 𝑠𝑡𝑎𝑡𝑒 ;						𝑓&',-$" =

𝛥𝐸!(-$!)𝑥
8 − 𝑜𝑥. 𝑠𝑡𝑎𝑡𝑒 (1) 

The definition of 𝑓&',-$" assumes the creation of a more oxidized hypothetical AO4 material with 

oxidation state 8+, which is poorly defined, so systems using these linear equations should be 

treated with relatively more suspicion. This choice is somewhat arbitrary, and effectively comes 

down to choosing at what oxidation state do we set the formation energy to 0; normally we use the 

energy of 𝑂. as the endmember, although this would have an ‘infinite’ oxidation number as per 

our oxidation state scheme. Thus, we choose 8+ since it is close to the highest observed oxidation 
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number of 9+,3 and since it means the denominator of the Eqs. in 1 are the same, affording a 

symmetry to the equations formed. Future work could focus on tuning this value. 

The resultant coefficients can be seen for each element in the plots shown in the following pages.  
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