Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting information

The substrate specificity in the O-demethylation of 4alkylguaiacols by Cytochrome P450 AgcA_{P450}

Sónia F Santos^{1,2}, Rajesh Reddy Bommareddy², Gary W Black ², Warispreet Singh^{*2}, Meilan Huang^{1*}

¹ School of Chemistry & Chemical Engineering, Queen's University, Belfast, BT9 5AG, United Kingdom

² Hub for Biotechnology in Build Environment, Newcastle upon Tyne, United Kingdom, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom

Corresponding Authors: m.huang@qub.ac.uk, w.singh@northumbria.ac.uk

Table of Contents

Figure S1 Sequence alignment of the AgcA _{P450} and GcoA _{P450} enzymes using Clustal-Omega
webserver developed by the European Bioinformatics Institute. Marked in green we have the active
centre conserved residues between these two proteins. Marked in red we have the non-conserved
residues, an Isoleucine (GcoA _{P450}) replaced by a Leucine (AgcA _{P450}) and a Threonine (GcoA) replaced
by an Alanine (AgcA _{P450})
Figure S2 RMSD for the backbone $C\alpha$ atoms of AgcA _{P450} protein (in blue) and the RMSD of the heavy
atoms of substrate Guaiacol (in orange)
Figure S3 RMSD for the backbone Ca atoms of AgcA _{P450} protein (in blue) and the RMSD of the heavy
atoms of substrate 4-methylguaiacol (in orange).
Figure S4 RMSD for the backbone C α atoms of AgcA _{P450} protein (in blue) and the RMSD of the heavy
atoms of substrate 4-ethylguaiacol (in orange)
Figure S5 RMSD for the backbone C α atoms of AgcA _{P450} protein (in blue) and the RMSD of the heavy
atoms of substrate 4-propylguiacol (in orange).
Figure S6 The radial distribution function of $AqcA_{P450}$ protein in complex with quaiacol. The dashed
blue line represents at least one water molecule near the Iron-oxo complex of Cpd I during the MD
simulations
Figure S7 The radial distribution function of $AqcA_{P450}$ protein in complex with 4-methylquaiacol. The
dashed blue line represents at least one water molecule near the Iron-oxo complex of Cpd I during
the MD simulations
Figure S8 The radial distribution function of $AacA_{P450}$ protein in complex with 4-ethylauaiacol. The
dashed blue line represents at least one water molecule near the Iron-oxo complex of Cpd I during
the MD simulations.
Figure S9 The radial distribution function of $AacA_{max}$ protein in complex with 4-propylauaiacol. The
dashed blue line represents at least one water molecule near the Iron-oxo complex of Cod I during
the MD simulations.
Figure \$10 Distance between 113 and A169 during the MD simulation of AacA _{baco} protein in
complex with Guajacol
Figure S11 Distance between 113 and A169 during the MD simulation of AacA _{buce} protein in
complex with 4-methylaugiacol 6
Figure \$12 Distance between 113 and A169 during the MD simulation of AacA _{buse} protein in
complex with 4-ethylauaiacol 6
Figure \$13 Distance between 113 and A169 during the MD simulation of AacA _{buse} protein in
complex with 4-propylauaiacol
Figure S14 Distance between the methoxy aroun of augiacol and the oxygen atom of $Fe(IV)=0$
Figure S15 Distance between the methoxy group of <i>A</i> -methylaugiacal and the avvgen atom of
Figure SIS Distance between the methoxy group of 4-methylgudideor and the oxygen atom of Fo(N)=0
Figure \$16 Distance between the methovy group of A-ethylaugigcal and the ovygen atom of
Figure Site Distance between the methoxy group of 4-ethylgudidcol und the oxygen atom of Fo(N)=0
Figure S17 Distance between the methowy group of 4 propulaying and the ovygen atom of
$E_{0}(N) = 0$
Figure \$18 The ovidation A-propulaugiacal in the active site of AgrA enzyme studied using
OM/MM calculations at M=4. The reaction profile of the hydrogen atom transfer (HAT) catalysed
with D2BL dispersion computed using the LIP2LVD functional with D2BL dispersion correction and the def2
TZVD basis set for M=4
Table S1 OMMM calculated crin densities of the evidetion 4 propulaurized in the active site of
Tuble 51 Qivinvity culculated spin densities of the oxidation 4-propyigualacol in the dctive site of ΔacA at $M=2$
AyLAp450 UL IVI-2
Tuble 52 Qivitivity culculated spin densities of the oxidation 4-propyigualacol in the dctive site of
AycA _{P450} ut IVI=4

Amino acid sequence of P450 AgcA_{P450} >tr|A0A385L6C3|A0A385L6C3_RHORH Cytochrome P450 OS=Rhodococcus rhodochrous OX=1829 GN=C6369_001540 PE=3 SV=1

MTSTHSFIDEITIEELEADPYPFYERLRKEAPIAYVPALGMYIVSTKELCAEISKDDANW PAVISAAGGRTFGPQALLNTNGDEHRNLRDMVEPHLQPSAVDKYIDDLVRPFARQRIAEF ENDGHADIVAAYCEPVSVRALGDLLGLGDVSTEKLREWFHNLSVSFTNAAVDENGEFANP EGFAPGDRAKAEIIAHVDPKIDKWIVEPDHSAISHWLHDGMPEGQTRSRDVIYPNLYVFL LGAMQEPGHAMATTLAGLFSRPDQLERVIDDPTLIPRAASEGMRWVAPIWSAAVKRAARE VTVGGVTLPEGSIVMLSYGSANQDENAYNAPTEYDLDRALVPNMTFGGGKHACAGTYFAN AVVRIGLEELLEAIPNIERDETHEVDFWGWGFRGPKQLFVKWEV

Sequence Alignment

Sequence alignment of the $AgcA_{P450}$ and $GcoA_{P450}$ enzymes. $GcoA_{P450}$ was used as a template for the construction of the model by homology.

sp P0DPQ7 GCOA_AMYS7	MTTTERPDLAWLDEVTMTQLERNPYEVYERLRAEAPLAFVPVLGSYVASTAEVCREVAT-	59
tr A0A385L6C3 A0A385L6C3_RHORH	MTSTHSFIDEITIEELEADPYPFYERLRKEAPIAYVPALGMYIVSTKELCAEISKD	56
sp PODPQ7 GCOA_AMYS7	SPDFEAVITPAGGRTFGHPAT	119
tr A0A385L6C3 A0A385L6C3_RHORH	DANWPAVISAAGGRTFGPQALUNTNGDEHRNLRDMVEPHLQPSAVDKYIDDLVRPFARQR . :: **** *****************************	116
sp PODPQ7 GCOA AMYS7		179
tr A0A385L6C3 A0A385L6C3_RHORH	IAEFENDGHADIVAAYCEPVSVRALGDLLGLGDVSTEKLREWFHNLSVSFTNAAVDENGE	176
sp P0DPQ7 GCOA_AMYS7	FANPEGFAEGDQAKAEIRAVVDPLIDKWIEHPDDSAISHWLHDGMPPGQTRDREYIYPTI	239
tr A0A385L6C3 A0A385L6C3_RHORH	FANPEGFAPGDRAKAEIIAHVDPKIDKWIVEPDHSAISHWLHDGMPEGQTRSRDVIYPNL	236
sp P0DPQ7 GCOA_AMYS7	YWYLLGAMQEPGHGMASTLVGLFSRPEQLEEVVDDPTLIPRAIAEGLRWTSPIWSATARI	299
tr A0A385L6C3 A0A385L6C3_RHORH	YVFLLGAHQEPGHAMATTLAGLFSRPDQLERVIDDPTLIPRAASEGMRWVAPTWSAAVKR **:**********************************	296
sp P0DPQ7 GCOA_AMYS7	STKPVTIAGVDLPAGTPVMLSYGSANHDTGKYEAPSQYDLHRPPLPHLAFGAGNHACAGI	359
tr A0A385L6C3 A0A385L6C3_RHORH	AAREVTVGGVTLPEGSIVMLSYGSANQDENAYNAPTEYDLDRALVPNMTFGGGKHACAGT **** ** *: **********************	356
sp P0DPQ7 GCOA_AMYS7	YFANHVMRIALEELFEAIPNLERDTREGVEFWGWGFRGPTSLHVTWEV 407	
tr A0A385L6C3 A0A385L6C3_RHORH	YFANAVVRIGLEELLEAIPNIERDETHEVDFWGWGFRGPKQLFVKWEV 404	

Figure S1 Sequence alignment of the AgcA_{P450} and GcoA_{P450} enzymes using Clustal-Omega webserver developed by the European Bioinformatics Institute. Marked in green we have the active centre conserved residues between these two proteins. Marked in red we have the non-conserved residues, an Isoleucine (GcoA_{P450}) replaced by a Leucine (AgcA_{P450}) and a Threonine (GcoA) replaced by an Alanine (AgcA_{P450}).

RMSD of $AgcA_{P450}$ in complex with each substrate

Figure S2 RMSD for the backbone $C\alpha$ atoms of AgcA_{P450} protein (in blue) and the RMSD of the heavy atoms of substrate Guaiacol (in orange).

AgcA_{P450} with 4-methylguaiacol

Figure S3 RMSD for the backbone $C\alpha$ atoms of AgcA_{P450} protein (in blue) and the RMSD of the heavy atoms of substrate 4-methylguaiacol (in orange).

AgcA_{P450}with 4-ethylguaiacol

Figure S4 RMSD for the backbone $C\alpha$ atoms of AgcA_{P450} protein (in blue) and the RMSD of the heavy atoms of substrate 4-ethylguaiacol (in orange).

Figure S5 RMSD for the backbone C α atoms of AgcA_{P450} protein (in blue) and the RMSD of the heavy atoms of substrate 4-propylguiacol (in orange).

Radial distribution functions in relation to the Cpd I complex in the active site

AgcA_{P450}with guaiacol

Figure S6 The radial distribution function of $AgcA_{P450}$ protein in complex with guaiacol. The dashed blue line represents at least one water molecule near the Iron-oxo complex of Cpd I during the MD simulations.

AgcA_{P450}with 4-methylguaiacol

Figure S7 The radial distribution function of $AgcA_{P450}$ protein in complex with 4-methylguaiacol. The dashed blue line represents at least one water molecule near the Iron-oxo complex of Cpd I during the MD simulations.

AgcA_{P450} with 4-ethylguaiacol

Figure S8 The radial distribution function of AgcA_{P450} protein in complex with 4-ethylguaiacol. The dashed blue line represents at least one water molecule near the Iron-oxo complex of Cpd I during the MD simulations.

AgcA_{P450} with 4-propylguaiacol

Figure S9 The radial distribution function of $AgcA_{P450}$ protein in complex with 4-propylguaiacol. The dashed blue line represents at least one water molecule near the Iron-oxo complex of Cpd I during the MD simulations.

Distance of the residues A169 and I13 acting as gate of the substrate access channel

AgcA_{P450}with guaiacol

Figure S10 Distance between I13 and A169 during the MD simulation of $AgcA_{P450}$ protein in complex with Guaiacol.

AgcA_{P450} with 4-methylguaiacol

Figure S11 Distance between I13 and A169 during the MD simulation of $AgcA_{P450}$ protein in complex with 4-methylguaiacol.

AgcA_{P450} with 4-ethylguaiacol

Figure S12 Distance between I13 and A169 during the MD simulation of AgcA_{P450} protein in complex with 4-ethylguaiacol.

AgcA_{EP4} with 4-propylguaiacol

Figure S13 Distance between I13 and A169 during the MD simulation of AgcA_{P450} protein in complex with 4-propylguaiacol.

Distance of the methyl group and the Iron-oxo complex of each complex

Figure S14 Distance between the methoxy group of guaiacol and the oxygen atom of Fe(IV)=O.

AgcA_{P450} with 4-methylguaiacol

Figure S15 Distance between the methoxy group of 4-methylguaiacol and the oxygen atom of Fe(IV)=O.

AgcA_{P450} with 4-ethylguaiacol

Figure S16 Distance between the methoxy group of 4-ethylguaiacol and the oxygen atom of Fe(IV)=O.

AgcA_{P450} with 4-propylguaiacol

Figure S17 Distance between the methoxy group of 4-propylguaiacol and the oxygen atom of Fe(IV)=O.

Figure S18 The oxidation 4-propylguaiacol in the active site of $AgcA_{P450}$ enzyme calculated using QM/MM methods at M=4 spin of iron. The reaction profile of the hydrogen atom transfer (HAT) catalysed by Cpd I was computed using the UB3LYP functional with D3BJ dispersion correction and the def2-TZVP basis set for M=4.

Table S1 QM/MM calculated spin densities of the oxidation 4-propylguaiacol in the active site of AgcA_{P450} at M=2

	RC	TS	IM1	IM2
Fe(IV)=O	2.11	1.8	2.11	1.12
Porphyrin+Cysteine	-1.1	-0.36	-0.16	0.0
4-propylguaiacol	0.0	-0.44	-0.96	0.0

Table S2 QM/MM calculated spin densities of the oxidation 4-propylguaiacol in the active site of $AgcA_{P450}$ at M=4

	RC	TS	IM1
Fe(IV)=O	2.04	2.11	2.14
Porphyrin+Cysteine	0.93	0.32	-0.12
4-propylguaiacol	0.0	0.55	0.97