Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting information

Ligand functionalization on Zr-MOFs enables efficient visible-light-

driven H₂O₂ evolution in pure water

Jianhao Qiu, Lu Zhang, Guanglu Xia, Dingliang Dai, Yong Tang, and Jianfeng Yao*

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

*Corresponding author.

E-mail: jfyao@njfu.edu.cn

Detection of H₂O₂

The generation of H_2O_2 was detected through iodometry. Briefly, 1 mL of the reaction liquid was added to 1 mL of 0.4 mol·L⁻¹ potassium iodide aqueous solution and 1 mL of 0.1 mol·L⁻¹ C₈H₅KO₄ aqueous solution. Then the solution was mixed and kept for 0.5 h in the dark. After that, the generation of H_2O_2 was estimated according to the strong absorbance of I₃⁻ at 350 nm recorded by UV-2600. The reaction equation is as follows:

 $H_2O_2 + 3I^- + 2H^+ \rightarrow I_3^- + 2H_2O$

Fig. S1 Cycling experiments of Z-UN for photocatalytic H₂O₂ evolution.

Fig. S2 H_2O_2 decomposition experiments over $ZnIn_2S_4$ and Z-UN. Reaction conditions: 20 mg photocatalysts, 40 mL H_2O_2 aqueous solution with a concentration of 1000 μ mol·L⁻¹, 400-780 nm illumination, ambient air and temperature.

Fig. S3 Photocatalytic evolution of H₂O₂ over Z-UN using the diverse solution: 10 vol%

ethanol, deionized water, tap water and Xuanwu Lake water.

Fig. S4 Photocatalytic evolution of H_2O_2 over Z-UN under simulated solar light (light filter: AM1.5, light intensity: 100 mW·cm⁻¹).

Fig. S5 XRD patterns of ZnIn₂S₄/UiO-66-NH₂ hybrids with 30, 50 and 70 wt% of

UiO-66-NH₂.

Fig. S6 XRD patterns of Z-UN before and after cycling experiments.

Fig. S7 FTIR spectra of UiO-66-NH₂, Z-UN and ZnIn₂S₄.

Fig. S8 FTIR spectra of UiO-66-NH₂, UiO-66-(OH)₂, UiO-66-OH and UiO-66.

Fig. S9 Water contact angle optical images of Z-U, Z-UOH, Z-U(OH) $_2$ and Z-UN

after 0.06 s of water contact.

Fig. S10 SEM images of $ZnIn_2S_4/UiO$ -66-NH₂ hybrids with 30 (a), 50 (b) and 70 (c)

wt% of UiO-66-NH₂.

Fig. S11 SEM images of Z-UN before (a) and after (b) photocatalytic reaction.

Fig. S12 UV-vis DRS of ZnIn₂S₄/UiO-66-NH₂ hybrids with 30, 50 and 70 wt% of

UiO-66-NH₂.

Fig. S13 Photocurrent spectra of Z-UN, ZnIn₂S₄ and UiO-66-NH₂.

Fig. S14 EIS Nyquist plots of Z-UN, $ZnIn_2S_4$ and UiO-66-NH₂.

Fig. S15 Mott-Schottky plots of $ZnIn_2S_4$, UiO-66-(OH)₂ and UiO-66-NH₂ at 2000 Hz.

Fig. S16 Photocatalytic H₂O₂ evolution over Z-U(OH)₂ with and without p-

benzoquinone.

Fig. S17 EPR spectra of DMPO-OH adducts over Z-UN at dark and 10-min

illumination.

Fig. S18 EPR spectra of DMPO- \cdot OH adducts over Z-U(OH)₂ at dark and 10-min

illumination.

Fig. S19 Charge excitation and transfer over Z-U or Z-UOH under visible-light

illumination.

Photocatalysts	Light	Sacrificial	Gas	Evolution rates	s Ref.
		agents		$(\mu mol \cdot g^{-1} \cdot h^{-1})$)
Alkylated MIL-	>420 nm	Benzyl alcohol	Air	313	S1
125					
OPA/MIL-125-	>420 nm	Benzyl alcohol	Air	866	S2
NH ₂					
MIL-125-	>420 nm	Isopropanol	O ₂	278	S3
NH ₂ (TiO ₂)/Ti ₃ C ₂					
ZIF-8/C ₃ N ₄	>420 nm	No	O ₂	2641	S4
MIL-125-PDI	>420 nm	No	O ₂	24	S5
UiO-66-B	AM1.5	Isopropanol	O ₂	1002	S6
MIL-125-	>420 nm	Benzyl alcohol	O ₂	600	S7
NH ₂ @ZnS					
MIL-88B-	>420 nm	No	Air	209	S8
NH2@ZnIn2S4					
Z-U(OH) ₂	400-780 nm	No	Air	733	this work
Z-UN	400-780 nm	No	Air	799	this work

Table S1 Data comparison of photocatalytic H_2O_2 evolution over MOF-based photocatalysts.

References

- S1 Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori and H. Yamashita, Angew. Chem.
 Int. Edit., 2019, 58, 5402-5406.
- S2 Y. Kawase, Y. Isaka, Y. Kuwahara, K. Mori and H. Yamashita, *Chem. Commun.*, 2019, **55**, 6743-6746.
- S3 Y. Wu, X. Li, Q. Yang, D. Wang, F. Yao, J. Cao, Z. Chen, X. Huang, Y. Yang and X. Li, *Chem. Eng. J.*, 2020, **390**, 124519.
- S4 Y. Zhao, Y. Liu, J. Cao, H. Wang, M. Shao, H. Huang, Y. Liu and Z. Kang, *Appl. Catal. B: Environ.*, 2020, 278, 119289.
- S5 X. Chen, Y. Kondo, S. Li, Y. Kuwahara, K. Mori, D. Zhang, C. Louis and H. Yamashita, J. Mater. Chem. A, 2021, 9, 26371-26380.
- S6 Y. Li, F. Ma, L. Zheng, Y. Liu, Z. Wang, P. Wang, Z. Zheng, H. Cheng, Y. Dai and B. Huang, *Mater. Horiz.*, 2021, 8, 2842-2850.
- S7 C. Liu, T. Bao, L. Yuan, C. Zhang, J. Wang, J. Wan and C. Yu, *Adv. Funct. Mater.*, 2022, **32**, 2111404.
- M. Liu, Z. Xing, H. Zhao, S. Song, Y. Wang, Z. Li and W. Zhou, J. Hazard.
 Mater., 2022, 437, 129436.