Supplementary information

FDU-12-C Encapsulated t-Bu(R,R)Co^{II}(salen) as Cathode Catalysts

for Asymmetric Electrocarboxylation of 1-Phenylethyl Chloride with

CO_2

Ying Wang,^a Rui Xiong,^a Le-Ting Wang,^a Hua Liu,^a Jia-Xing Lu^{a,b} and Huan Wang *a,b

^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China ^b Institute of Eco-Chongming 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, China

* Corresponding Authors: <u>hwang@chem.ecnu.edu.cn</u>

1. Supplementary Methods

The ee value of the product is determined by the peak integral area corresponding to the two configurations of R and S in **Fig. S1**, using the following formula:

 $ee = |([R]-[S])/([R]+[S])| \times 100\%$

Where [R] and [S] are corresponded to the peak integrated areas of the R and S configuration products from the HPLC chart, respectively.

The yield of the product was calculated from the sum of the areas of the two peaks, ie, [R]+[S], according to the calibration curve.

Configuration of Product	Ret Time (min)	Peak Area (mAU*min)	ee (R-)
R-	15.773	230.343	960/
S-	16.240	16.405	

Figure S1. The raw data of ee value corresponds to entry 5 of Table 1 in the manuscript.

Figure S2. ¹H NMR spectrum of the product.

Figure S3. TEM image of t-Bu(R,R)Co^{II}(salen)@FDU-12-C(180) after using for 6 times

Entry	Sample	Co loaded (wt%)
1	t-Bu(R,R)Co ^{II} (salen)@FDU-12-C(200)	0.16
2	t-Bu(R,R)Co ^{II} (salen)@FDU-12-C(180)	0.16
3	t-Bu(R,R)Co ^{II} (salen)@FDU-12-C(150)	0.13
4	t-Bu(R,R)Co ^{II} (salen)@FDU-12-C(100)	0.08
5	t-Bu(R,R)Co ^{II} (salen)@FDU-12-C(50)	0.04
6	t-Bu(R,R)Co ^{II} (salen)@FDU-12-C-reused	0.14

Table S1 ICP characterization of Co element content

Table S2 Textural properties of FDU-12-C and t-Bu(*R*,*R*)Co^{II}(salen)@FDU-12-C(180)

	BET surface	Average pore	Total pore
Sample	area ^a	sizea	volumea
	$(m^2 g^{-1})$	(nm)	$(cm^3 g^{-1})$
FDU-12-C	589	12	0.56
t-Bu(R,R)Co ^{II} (salen)@FDU-12-C(180)	491	11	0.50

 $^{\mathrm{a}}$ Data from N_2 adsorption-desorption isotherms at 77 K.

Table S3 Current of composite t-Bu(R,R)Co^{II}(salen)@FDU-12-C(180) and t-Bu(R,R)Co^{II}(salen) added directly to the electrolyte in CVs.

	т	The amount of t-	
Sample	$(mA)^a$	$Bu(R,R)Co^{II}(salen)$	Ref
		(mmol)	
t-Bu(<i>R</i> , <i>R</i>)Co ^{II} (salen)@FDU-12-C(180)	0.015	0.0004^{b}	This work
$t-Bu(R,R)Co^{II}(salen)$	0.01	0.04	1

^{*a*} The reduction peak current corresponds to t-Bu(R,R)Co^{II}(salen) to [t-Bu(R,R)Co^I(salen)]⁻ at glassy carbon (GC) electrode (d = 2 mm);

^b Calculated by combining the Co content calculated by ICP-AES and the amount of composite material coated on the working electrode.

References

1. B.-L. Chen, H.-W. Zhu, Y. Xiao, Q.-L. Sun, H. Wang and J.-X. Lu, *Electrochem*. *Commun.*, 2014, **42**, 55-59.