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Supplementary Methods-1 

Density Functional Theory 

Computational Details Density functional theory (DFT) calculations were performed using the Vienna 

Ab initio Simulation Package (VASP) code 1,2.  

The functional of choice was Perdew-Becke-Ernzerhof (PBE) 3 Core electrons were described as 

projector augmented-waves (PAW), 4,5 with the valence monoelectronic states were expanded as 

plane waves with maximum kinetic energy of 450 eV. The (110) surface of cubic In2O3 was selected 

as it was identified to privide a good compromise between stability and activity 6. The slab was 

represented with 4 layers (Figure 1),  and a single oxygen vacancy was constructed by removing a 

surface O atom 6. All intermediates were constructed on the undoped In2O3 slab, and relaxed. The 

relaxed In2O3 slabs were then used as a starting point for the construction of doped slabs. For each 

intermediate, 2 of the  non-identical In atoms neighboring the O vacancy were replaced one-by-one, 

and the yielded system was relaxed once again (Figure S1). All slabs were separated by at least 10 

Å of vacuum. The k-points sampling was a G–cantered grid with a density of ~0.3 k-points per Å.  A 

dipole correction was employed along the z-direction normal to the slab faces 7. The molecules were 

placed in a cubic box of 10 Å sides. In all cases the optimization thresholds were 10−6 and 0.01 eV/A 

for electronic and ionic relaxations, respectively. In a few cases where the particular doping/adsorbate 

configuration caused slow ionic convergence, the criterion was relaxed to 0.05 eV/A. The refence 

energies of and full traceback for constructing individual intermediates is provided in Figure S2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Methods-2 

Subgroup-discovery (SGD) Algorithm 

The SGD algorithm, is employed as a data-mining approach for detecting local patterns in data8,9. This 
algorithm is specifically of interest when a global prediction model of target properties do not yield an 
optimal fit. In such scenarios, detecting interpretable local patterns has the potential of providing more 
knowledge about the underlying mechanisms of target properties, which might be different for each 
subpopulation of the data. The aim here, is to identify subgroups which depict a unique response of 
the target property, and then describe them based on values of candidate descriptors which are 
provided for the algorithm. To generate its output, the algorithm creates a pool of propositions that 
define only subpopulations of the data. These propositions are Boolean statements which put 
constraints on the value of most relevant candidate descriptors. Each subgroup is then defined as a 
combination of propositions. 
There are different methods for evaluating the quality of detected subgroups, which might differ based 
on the number of target properties, as well as the type of patterns to be identified. These methods are 
usually similar in that they are product of two main terms, where the first term determines relative size 
of detected subgroup, and the second terms is a utility function. The utility function focuses on 
detecting subgroups whose distribution of target property is as far as possible, from the rest of the 
data. In our study, the quantitative comparison for each subgroup (SG) in terms of how unique it is 
from the rest of the dataset (P) is done via calculation of a quality function as follows10: 
 

𝑄(𝑃, 𝑆𝐺) =  
𝑠(𝑆𝐺)

𝑠(𝑃)
× 𝐷𝑐𝐽𝑆(𝑃, 𝑆𝐺). 

 
The first term in equation above measures size ratio between subgroup and whole dataset, and 
ensures the detected subgroup is large enough for statistical significance. The second term is 
cumulative Jensen-Shanon divergence between distribution of target property in the subgroup and the 
rest of  dataset. This term will be zero for identical distribution and increases when distributions are 
further apart.  
 

 

Supplementary Methods-3 

In the spirit of open-access research, and to promote reproducibility of our results, we have made all 

of the python scripts needed to generate the analysis results available on a Git repository, along with 

the performance and DFT dataset: 

https://github.com/khatamirad/manuscript-RSC_In2O3_14 
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Figure S1. Computational procedure employed for obtaining relaxed structures and corresponding energies on doped 

(and undoped) cubic In2O3 (110) surface. Initially an undoped slab is constructed and relaxed. In the following step, the 

intermediate structure is placed on top of the O vacancy, and relaxed. Doped configurations are obtained by replacing 

one (at a time) of the In atoms neighboring the O vacancy with a dopant. This configuration is used to initialize the 

relaxation of doped structures. 

  



 

 

 

Figure S2. Intermediates along the CO (a) and MeOH (b) reaction pathway were selected maximize chemical diversity 

withing the scope of intermediates in CO2 reduction [Dang2021: 10.1126/sciadv.aaz2060]. Out of the three possible 

binding sites (m1 – top, m2 – top, O - vacancy), each top – site intermediate was placed on m1 and m1 (c), and the 

Ovac. Intermediates were rotated 180 degrees around the surface normal. In addition to repositioning the intermediates, 

the O vacancy site was populated with O (effectively completing the pristine surface), and OH for all top bonded 

structures. 

  



 

 

 

Figure S3. Correlation between the energy of the intermediate (Eads) and oxygen vacancy formation energy (Evac) 

for intermediates along the CO on MeOH pathway, colored by binding site (left) and dopant (right). 

 

 

Figure S4. Correlation between the energy of the intermediate (Eads) and oxygen vacancy formation energy (Evac) 

for intermediates along the CO on MeOH pathway, colored by binding site (left) and dopant (right). 



 

 

 

Figure S5. Correlation between the energy of the intermediate (Eads) and oxygen vacancy formation energy (Evac) 

for intermediates along the CO on MeOH pathway, colored by binding site (left) and dopant (right). 



 

 

 

Figure S6. Correlation between the energy of the intermediate (Eads) and oxygen vacancy formation energy (Evac) 

for intermediates along the CO on MeOH pathway, colored by binding site (left) and dopant (right). 



 

 

 

Figure S7. Correlation between the energy of the intermediate (Eads) and oxygen vacancy formation energy (Evac) 

for intermediates along the CO on MeOH pathway, colored by binding site (left) and dopant (right). 

 



 

 

 

Figure S8. Correlation between the energy of the intermediate (Eads) and oxygen vacancy formation energy (Evac) 

for intermediates along the CO on MeOH pathway, colored by binding site (left) and dopant (right). 

 



 

 

 

Figure S9. Correlation between the energy of the intermediate (Eads) and oxygen vacancy formation energy (Evac) 

for intermediates along the CO on MeOH pathway, colored by binding site (left) and dopant (right). 

 



 

 

 

Figure S10. Correlation between the energy of the intermediate (Eads) and oxygen vacancy formation energy (Evac) 

for intermediates along the CO on MeOH pathway, colored by binding site (left) and dopant (right). 

 



 

 

 

Figure S11. Correlation between the energy of the intermediate (Eads) and oxygen vacancy formation energy (Evac) 

for intermediates along the CO on MeOH pathway, colored by binding site (left) and dopant (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S12. Obtained RMSE for train set (left) and test set (right) at different model complexities. Each RMSE value 

depicts the average RMSE from 14 cross validations. 
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