Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting information

Catalytic conversion to ammonia through solid-state nitrate as a proposal for emerging usage of nitrogen oxides

Atsuko Tomita, Ryutaro Wakabayashi and Tatsuo Kimura*

National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.

*e-mail: t-kimura@aist.go.jp

Nanocomposite catalyst	Amount of	Specific	Total pore	Pore	Size, ave. PGM NPs	
/ mass ratio	Pt NPs	surface area	volume	diameter	/ nm	
	/ mass %	$/ m^2 g^{-1}$	$/ cm^3 g^{-1}$	/ nm	TEM	XRD
γ-Al ₂ O ₃	-	-	-	-	-	-
$10Ba/1.00Pt/100\gamma$ -Al ₂ O ₃	0.90	-	-	-	13	17
$1.00Pt@100mAl_2O_3(\gamma)$		200	0.35	5.0	22	23
10Ba/1.00Pt@100mAl ₂ O ₃ (γ)		180	0.32	5.0	21	25
$10Ba/1.00Pd@100mAl_2O_3(\gamma)$	-	190	0.44	7.5	51	15 (PdO)
$10Ba/1.00Ir@100mAl_2O_3(\gamma)$	-	190	0.33	5.1	>100	32 (IrO ₂)
$10Ba/1.00Rh@100mAl_2O_3(\gamma)$	-	230	0.49	5.8	19	15
						(Rh_2O_3)
$2.7Ca/0.93Pt@100mAl_2O_3(\gamma)$	0.90	180	0.33	4.2	21	22
$4.0Ca/1.00Pt@100mAl_2O_3(\gamma)$	0.95	180	0.32	5.1	22	23
5.6Ca/0.96Pt@100mAl ₂ O ₃ (γ)	0.90	150	0.27	4.2	24	20
7.2Ca/0.97Pt@100mAl ₂ O ₃ (γ)	0.90	170	0.26	4.0	21	16
8.8Ca/0.99Pt@100mAl ₂ O ₃ (γ)	0.90	140	0.19	3.5	20	15

 $\label{eq:table_state} Table \ S1 \ Structural \ features \ of \ AEM/PGM@mAl_2O_3 \ type \ nanocomposite \ catalysts.$

Table S2 Direct NH_3 synthesis in a flow of 1000 ppm NO with 1% H_2 by using typical nanocomposite catalysts.

	Temperature / °C	NO /	H ₂	NH ₃	N ₂	N ₂ O	NO ₂
		ppm					
1.00Pt/100y-Al ₂ O ₃	150 °C	0	7890	841	34	53	0
	200 °C	0	7840	899	27	23	0
	250 °C	0	7780	925	23	11	0
	300 °C	0	7790	941	20	0	0
	350 °C	0	7780	959	12	0	0
	400 °C	0	7790	967	8	0	0
	450 °C	0	7810	977	6	0	0
10Ba/1.00Pt@100mAl ₂ O ₃ (γ)	150 °C	0	8330	597	195	0	0
	200 °C	0	8200	722	144	0	0
	250 °C	0	7990	849	69	0	0
	300 °C	0	7880	912	51	0	0
	350 °C	0	7890	947	27	0	0
	400 °C	0	7970	933	28	0	0
	450 °C	0	7940	915	47	0	0
5.6Ca/0.96Pt@100mAl ₂ O ₃ (γ)	150 °C	0	8190	715	95	55	0
	200 °C	0	8010	866	63	0	0
	250 °C	0	7860	924	47	0	0
	300 °C	0	7860	959	34	0	0
	350 °C	0	7820	967	28	0	0
	400 °C	0	7830	973	28	0	0
	450 °C	0	7840	962	34	0	0

Fig. S1 Characterization of $1Pt@mAl_2O_3(\gamma)$ prepared in one-pot by spray-drying a precursor solution for obtaining mAl_2O_3 in the presence of Pluronic P123 with H₂PtCl₆; a) representative TEM image with b) resultant size distribution of Pt NPs, c) typical SEM image, d) low- and e) wide-angle XRD patterns and f) N₂ adsorption-desorption isotherm with g) corresponding pore size distribution curve.

Fig. S2 Amounts of NOx storage and NH₃ recovery of $10Ba/1Pt@mAl_2O_3(\gamma)$ with the selectivity to NH₃ during the operation cycles by alternate gas-switching between 1000 ppm NO with 10% O₂ and 1% H₂ at a) 200 °C, b) 250 °C, and c) 300 °C or 5% H₂ for NH₃ recovery at d) 200 °C, e) 250 °C, and f) 300 °C.

Fig. S3 A preliminary study for NOx storage and NH₃ recovery by using a common $10Ba/1Pt/\gamma$ -Al₂O₃ type catalyst, prepared through step-by-step impregnation of H₂PtCl₆ and Ba(OOCCH₃)₂ over a commercially available γ -Al₂O₃, with the selectivity to NH₃ during the operation cycles by alternate gas-switching between 1000 ppm NO with 10% O₂ and 1% H₂ at a) 175 °C, b) 200 °C, c) 250 °C and d) 300 °C.

Fig. S4 Direct NO₂ storage property of $10\text{Ba}/1\text{Pt}@mAl_2O_3(\gamma)$, being calculated as $\circ \text{BaCO}_3$ and $\Box \text{BaO}$ monolayers at the surface of $mAl_2O_3(\gamma)$, during a) storage of NO₂ at different temperatures ranging from 300 °C down to 50 °C for 60 min in a flow of 1000 ppm NO₂ and b) that at 50 °C for 60 min in a flow of different NO₂ concentration from 300 ppm up to 2000 ppm.

Fig. S5 Amounts of NOx storage and NH₃ recovery with the selectivity to NH₃ by using a) $10Ba/1Pt@mAl_2O_3(\gamma)$, b) $10Ba/1Pd@mAl_2O_3(\gamma)$, c) $10Ba/1Ir@mAl_2O_3(\gamma)$ and d) $10Ba/1Rh@mAl_2O_3(\gamma)$ during the operation cycles at 300 °C by alternate gasswitching between 1000 ppm NO with 10% O₂ and 1% H₂.

Fig. S6 NOx-TPD profiles in a flow of 1000 ppm NO with 10% O₂ at 300 °C by using a) 10Ba/1Pt@mAl₂O₃(γ) and other catalysts such as b) Sr/1Pt@mAl₂O₃(γ), c) Ca/1Pt@mAl₂O₃(γ) and d) Mg/1Pt@mAl₂O₃(γ) during the heating from 300 °C up to 700 °C and/or 500 °C.

Fig. S7 Direct catalytic conversion of NO with H₂ to nitrogen sources such as \bullet NH₃, •NO, \bullet NO₂, \bullet N₂O, and \bullet N₂ during the reaction in a flow of 1000 ppm NO with 1% H₂ by using a) 1Pt@mAl₂O₃(γ), b) 5.6Ca/0.96Pt@mAl₂O₃(γ) and c) 10Ba/1Pt@mAl₂O₃(γ) at temperatures ranging from 150 °C up to 450 °C.

Fig. S8 Amounts of NOx storage and NH₃ recovery with the selectivity to NH₃ by using a), b) 2.7Ca/0.9Pt@mAl₂O₃(γ) during the operation cycles at 300 °C by alternate gas-switching between 1000 ppm NO with 10% O₂ and 1% H₂ and those observed for c) 4.0Ca/1.0Pt@mAl₂O₃(γ), d) 5.6Ca/0.96Pt@mAl₂O₃(γ), e) 7.2Ca/0.97Pt@mAl₂O₃(γ) and f) 8.8Ca/0.99Pt@mAl₂O₃(γ).

Fig. S9 A case study for maximizing NH₃ recovery by using 10Ba/1Pt@mAl₂O₃(γ); amounts of NOx storage and NH₃ recovery with the selectivity to NH₃ during the operation cycles at 300 °C by alternate gas-switching between 1000 ppm NO with 10% O₂ and 1% H₂ when the reaction time was reduced from a) 60 min to b) 20 min and c) 15 min for each reaction or 5% H₂ when the reaction time was reduced from d) 60 min for each reaction to e) 15 min for NOx storage and 30 min for NH₃ synthesis.

Fig. **S10** study for maximizing NH₃ А case recovery by using 5.6Ca/0.96Pt@mAl₂O₃(γ); amounts of NOx storage and NH₃ recovery with the selectivity to NH₃ during the operation cycles at 300 °C by alternate gas-switching between 1000 ppm NO with 10% O₂ and 1% H₂ when the reaction time was reduced from a) 60 min to b) 20 min and c) 15 min for each reaction or 5% H₂ when the reaction time was reduced from d) 60 min to e) 20 min and f) 15 min for each reaction.

Fig. S11 Amounts of NOx storage and NH₃ recovery with the selectivity to NH₃ by using $10Ba/1Pt@mAl_2O_3(\gamma)$ during the operation cycles at 300 °C for totally 120 min by alternate gas-switching between 1000 ppm NO with 10% O₂ a) without CO₂ and H₂O, b) with 10% CO₂, c) with 10% H₂O, and d) with 10% CO₂ and 10% H₂O for 60 min and 1% H₂ for NH₃ recovery.