Supporting Information

Schottky junction with Bi/Bi₂O₃ core-shell nanoparticles modified g-C₃N₄ for boosting photocatalytic H₂O₂ evolution from pure water

Xinyue Yan,^{†a} Guiyang Yu,^{†b*} Chuanwang Xing,^a Yujia Hu,^a Heyuan Liu^c and Xiyou Li^a*

^a School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China

^b Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science

(MOE), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

^c College of New Energy, China University of Petroleum (East China), Qingdao, Shandong, 266580, PR China

* Corresponding author.

Emails: xiyouli@upc.edu.cn; yugy3413@qust.edu.cn

[†]Xinyue Yan and Guiyang Yu contributed equally.

Contents:

Experimental section

Fig. S1 Zeta potentials of pristine g-C₃N₄ in pure water.

Fig. S2 (a) SEM and (b) TEM images of pristine $g-C_3N_4$.

Fig. S3 (a) SEM and (b) corresponding magnified region images of 2% $Bi/Bi_2O_3@g-C_3N_4$.

Fig. S4 (a, b) TEM and (c) HRTEM images of 2% Bi/Bi₂O₃@g-C₃N₄.

Fig. S5 EDS mapping images of 2% Bi/Bi₂O₃@g-C₃N₄.

Fig. S6 (a) XRD patterns of original and retested 2% Bi/Bi₂O₃@g-C₃N₄ samples. (b)

HRTEM and corresponding magnified region images of 2% Bi/Bi₂O₃@g-C₃N₄.

Fig. S7 FTIR spectra of g-C₃N₄, and various Bi/Bi₂O₃@g-C₃N₄ samples.

Fig. S8 (a) N₂ adsorption-desorption isotherms of $g-C_3N_4$, and various Bi/Bi₂O₃@g-C₃N₄ samples. (b) Pore size distribution curves of $g-C_3N_4$ and 2% Bi/Bi₂O₃@g-C₃N₄ samples.

Fig. S9 XPS survey spectra of g-C₃N₄, and 2% Bi/Bi₂O₃@g-C₃N₄ samples.

Fig. S10 UV-Vis diffuse reflectance spectra of $g-C_3N_4$, and various Bi/Bi₂O₃@ $g-C_3N_4$ samples.

Fig. S11 Mott-Schottky plot of (a) g-C₃N₄ and (b) Bi/Bi₂O₃ at different frequencies.

Fig. S12 (a) DFT calculations for the molecular orbits of $g-C_3N_4$ model (Yellow and blue isosurfaces represent electron accumulation and electron depletion, respectively). Density of states (DOS) of $g-C_3N_4$ model: (b) sum, (c) N and (d) C elements.

Fig. S13 Bi 4f XPS spectra of 2% Bi/Bi₂O₃@g-C₃N₄ samples in dark, light irradiation for 5 min and 20 min.

Fig. S14 (a) PL spectra and (b) decay curves of $g-C_3N_4$, and various Bi/Bi₂O₃@ $g-C_3N_4$ samples.

Fig. S15 Time-dependent photocurrent responses of $g-C_3N_4$, and various Bi/Bi₂O₃@g-C₃N₄ samples.

Fig. S16 Standard curve of H₂O₂ evolution amount.

Fig. S17 XRD patterns of fresh and used 2% Bi/Bi₂O₃@g-C₃N₄ samples under the dried temperature of (a) 80 °C and (b) 50 °C.

Fig. S18 FTIR spectra of fresh and used 2% Bi/Bi₂O₃@g-C₃N₄ samples.

Fig. S19 (a) C 1s, (b) N 1s, (c) Bi 4f, and (d) O 1s spectra of fresh and used 2% $Bi/Bi_2O_3@g-C_3N_4$ samples.

Fig. S20 (a) Time course of photocatalytic H_2O_2 production and (b) H_2O_2 production rate for g-C₃N₄, 2% Bi/Bi₂O₃@g-C₃N₄ and 2% Bi/Bi₂O₃@g-C₃N₄-Mix samples under pure water.

Fig. S21 (a) Time course of photocatalytic H_2O_2 production and (b) H_2O_2 production rate for 2% Bi@g-C₃N₄, 2% Bi₂O₃@g-C₃N₄ and 2% Bi/Bi₂O₃@g-C₃N₄ samples under pure water.

Fig. S22 (a) UV-Vis diffuse reflectance spectra (inset is plots of transformed Kubelka– Munk function versus photon energy), (b) VB-XPS spectra of Bi₂O₃.

Fig. S23 (a) PL emission spectra and (b) photocurrent curves for 2% $Bi@g-C_3N_4$, 2% $Bi_2O_3@g-C_3N_4$ and 2% $Bi/Bi_2O_3@g-C_3N_4$ samples.

Fig. S24 (a) Zero-order kinetic fitting curves (b, c) first-order kinetic fitting curves of g-C₃N₄, and various Bi/Bi₂O₃@g-C₃N₄ samples.

Fig. S25 Time course of photocatalytic H_2O_2 production over 2% Bi/Bi₂O₃@g-C₃N₄ with different quenchers.

Fig. S26 Comparison of Zeta potentials over pristine $g-C_3N_4$ and various Bi/Bi₂O₃@g-C₃N₄ samples in pure water.

Fig. S27 The first derivative curve of the relationship between $\Delta E/\Delta V$ and titration volume using 10⁻⁵ mol/L NaOH as the titrant upon g-C₃N₄ and 2% Bi/Bi₂O₃@g-C₃N₄ samples based on potentiometric titration method.

Table S1 The element content of g-C₃N₄ and 2% Bi/Bi₂O₃@g-C₃N₄ based ICP analysis.

Table S2 The absolute fluorescence quantum yield (%) of $g-C_3N_4$ and $Bi/Bi_2O_3@g-C_3N_4$ samples excited at 340 nm in the wavelength range of 390-550 nm.

Table S3 Time constant τ of fluorescence decay curves of g-C₃N₄ and Bi/Bi₂O₃@g-C₃N₄ samples.

 Table S4 Comparison of H2O2 production performance of different photocatalysts.

 Reference

Experimental section

Chemicals

Melamine, Bi(NO₃)₃·5H₂O (99.0%), Polyvinylpyrrolidone (PVP, MW \approx 58,000 g/mol), Ethylene glycol (C₂H₆O₂, 99.0%), Metal Bi (CAS: 7440-69-9), and Ethanol (CH₃CH₂OH, 99.5%) were purchased from Aladdin. Deionized water was used to prepare all solutions and to rinse samples and glassware.

Characterization

X-ray diffraction (XRD) patterns of these nanocomposites were obtained by Rigaka Ultima IV diffractometer with Cu K α radiation ($\lambda = 0.1538$ nm). The molecular structure was measured by Fourier transform infrared (FTIR) spectra on a Hitachi U-3300 Fourier infrared spectrometer. The surface morphology and structure were investigated by using Field-emission scanning electron microscope (SEM) (JEOL JSM-6700F) and transmission electron microscope (TEM) (JEM 2100). The Brunauer-Emmett–Teller (BET) specific surface area and pore size distribution were derived from Beckman Coulter SA3100 analyzer. The N2 adsorption-desorption isotherm was measured at 77 K. The samples were pretreated and degassed under vacuum at 120°C. The optical properties were recorded in the 300-800 nm range on a Hitachi UH-4150 spectrophotometer using BaSO₄ as a background. Ultraviolet photoelectron spectroscopy (UPS) was tested by X-ray photoelectron spectrometer (ThermoFisher, ESCALAB 250 Xi). Among them, the vacuum degree of the analysis chamber is 8×10^{-10} ¹⁰ Pa, and Hel 21.22 eV is used for testing. The energy resolution is 90-120 meV and the light spot is 1 mm. The surface chemical states of samples were investigated by X-

ray photoelectron spectroscopy (XPS) using Thermo Escalab 250Xi with Al K α as excitation source. The sample was etched and thinned using an argon ion gun. The etching spot size was 1.5mm, the depth was 30 nm, and the etching voltage was 3000 eV. Steady-state photoluminescence (PL) spectra, time-resolved photoluminescence spectra and photoluminescence quantum yields were captured on a FLS980 fluorescence spectrophotometer (Edinburgh) with an excitation of 340 nm.

Photocatalytic production of H₂O₂ experiment

The specific steps of the photocatalytic production of hydrogen peroxide experiment are as follows: First, evenly disperse 50 mg catalyst in 50 mL water and put it into a quartz glass reactor with temperature-controlled circulating water device. Then, under dark conditions, the system was constantly bubbled O₂ and stirred for 1 h to achieve the adsorption-desorption equilibrium before the reaction. Finally, the suspension was irradiated under a 300 W xenon lamp equipped with a 420 nm cut-off filter, and 2 mL solution was taken at intervals. The catalyst powder was filtered and removed by a 0.22 um filter, and the concentration of hydrogen peroxide was measured by iodimetry. In addition, the decomposition behavior of hydrogen peroxide at an initial concentration of 1 mM was studied in open air. In order to study the stability and recyclability of the photocatalyst, the reaction solution was recovered, washed with deionized water and ethanol, and then dried for circulation experiment.

The apparent quantum efficiency (AQE) was carried out under the same photocatalytic conditions, except for the irradiation light wavelength obtained by changing a band pass optical filter and using 50 mg catalyst. AQE was calculated using the following formula:

$$AQE = \frac{number of reacted electrons}{number of incident photos} \times 100\%$$
$$= \frac{2 \times number of evolved H_2O_2 molecules}{number of incident photos} \times 100\%$$

Electrochemical and Photoelectrochemical measurements

Rotating disk electrode (RDE) was measured in a conventional three-electrode battery system on CHI 760E (Shanghai, Chenhua) electrochemical workstation. The RDE consists of a working electrode, an Ag/AgCl reference electrode and a carbon rod pair electrode. The working electrode was prepared as follows: 5 mg catalyst powder was dispersed in 800 μ L anhydrous ethanol and 30 μ L Nafion (5 wt%, Sigma-Aldrich), then then ultrasonic treatment to form a uniform suspension. 10 μ L suspension was uniformly dropped on the glassy carbon electrode and dried at room temperature. Linear sweep voltammetry (LSV) curves were collected at a scan rate of 10 mV s⁻¹ in an O₂-saturated 0.1 mmol L⁻¹ phosphate buffer solution (pH=7). The average number of electrons (n) involved in the total reduction of O₂ was obtained by linear regression of the plots using the following formula:

$$j^{-1} = j_{k}^{-1} + B^{-1}\omega^{-1/2}$$
$$B = 0.2nFv^{-1/6}CD^{2/3}$$

Where j is the measured current density, j_k is the kinetic current density, ω is the rotating speed (rpm), F is the Faraday constant (96,485 C mol⁻¹), v is the kinetic viscosity of water (0.01 cm² s⁻¹), C is the bulk concentration of O₂ in water (1.26×10⁻³ mol cm⁻³), and D is the diffusion coefficient of O₂ (2.7×10⁻⁵ cm² s⁻¹), respectively.

The transient photocurrent response and electrochemical impedance spectra (EIS) were recorded with a CHI760D electrochemical workstation (Shanghai Chenhua Instrument Corp., China) in a conventional three-electrode system consisting of carbon rod counter electrode, Ag/AgCl reference electrode and working electrode. First of all, the sample (2 mg) was uniformly dispersed in 1 mL anhydrous ethanol and treated by ultrasound for 2 hours to form a uniform suspension. The working electrode is made by dropping suspended solution onto a pre-cleaned FTO glass surface and dried at room temperature. During the measurement, three electrodes were immersed in 0.5 M Na₂SO₄ aqueous solution and the working electrodes were illuminated by a 300 W Xe lamp with a 420 nm cut-off filter. The electrochemical impedance spectroscopy (EIS) was collected on a frequency between 10^{-2} and 10^{5} Hz. Moreover, Mott-Schottky curves were also collected at the frequency of 500 Hz and 1000 Hz.

Theoretical calculations

All of calculations were performed with Cambridge Serial Total Energy Package (CASTEP) plane-wave code in Material Studio software based on density functional theory (DFT) [1-2]. The generalized gradient approximation (GGA) in the scheme of the Perdew-Burke-Ernzerhof (PBE) was employed as exchange-correlation functional. The geometry structures were optimized with the cutoff energy of 400 eV [3]. In order to describe the van der Waals (vdW) interaction of the system properly, TS method of DFT-D was applied [4]. The SCF tolerance was set to 10⁻⁵ eV and the Koelling-Harmon relativistic treatment was used for scalar relativistic corrections to heavy element.

Fig. S1 Zeta potentials of pristine g- C_3N_4 in pure water.

Fig. S2 (a) SEM and (b) TEM images of pristine g- C_3N_4 .

Fig. S3 (a) SEM and (b) corresponding magnified region images of 2% Bi/Bi₂O₃@g-C₃N₄.

Fig. S4 (a, b) TEM and (c) HRTEM images of $2\% Bi/Bi_2O_3@g-C_3N_4$.

Fig. S5 EDS mapping images of 2% $Bi/Bi_2O_3@g-C_3N_4$.

Fig. S6 (a) XRD patterns of original and retested 2% $Bi/Bi_2O_3@g-C_3N_4$ samples. (b) HRTEM and corresponding magnified region images of 2% $Bi/Bi_2O_3@g-C_3N_4$.

Fig. S7 FTIR spectra of $g-C_3N_4$, and various $Bi/Bi_2O_3@g-C_3N_4$ samples.

Fig. S8 (a) N_2 adsorption-desorption isotherms of g-C₃N₄, and various Bi/Bi₂O₃@g-C₃N₄ samples. (b) Pore size distribution curves of g-C₃N₄ and 2% Bi/Bi₂O₃@g-C₃N₄ samples.

Fig. S9 XPS survey spectra of g-C₃N₄, and 2% Bi/Bi₂O₃@g-C₃N₄ samples.

Fig. S10 UV-Vis diffuse reflectance spectra of $g-C_3N_4$, and various Bi/Bi₂O₃@g-C₃N₄

samples.

Fig. S11 Mott-Schottky plot of (a) g-C₃N₄ and (b) Bi/Bi₂O₃ at different frequencies.

We used ultraviolet photoelectron spectroscopy (UPS) to determine the Fermi level [*Angew. Chem. Int. Ed.*, 2019, 48, 2-8]. According to the linear intersection method, the work functions (Φ) of g-C₃N₄ and 2% Bi/Bi₂O₃@g-C₃N₄ were calculated to be 3.50 and 4.09 eV (vs vacuum), respectively, by subtracting the width of the He I UPS spectrum from the excitation energy (21.22 eV), as shown in equation of $hv = E_{cutoff} + \phi$. Based on the relationship between the vacuum energy (E_{abs}) and the normal electrode potential (E_{θ}), E_{abs} =-E_{θ} - 4.5 eV, the Fermi level of the g-C₃N₄ and 2% Bi/Bi₂O₃@g-C₃N₄ were calculated to be -1.0 V and -0.41 V (vs. NHE), respectively.

Fig. S12 (a) DFT calculations for the molecular orbits of $g-C_3N_4$ model (Yellow and blue isosurfaces represent electron accumulation and electron depletion, respectively). Density of states (DOS) of $g-C_3N_4$ model: (b) sum, (c) N and (d) C elements.

Fig. S13 Bi 4f XPS spectra of 2% Bi/Bi₂O₃@g-C₃N₄ samples in dark, light irradiation

for 5 min and 20 min.

Fig. S14 (a) PL spectra and (b) decay curves of $g-C_3N_4$, and various Bi/Bi₂O₃@g-C₃N₄ samples.

Fig. S15 Time-dependent photocurrent responses of $g-C_3N_4$, and various Bi/Bi₂O₃@g-

C₃N₄ samples.

Fig. S16 Standard curve of H_2O_2 evolution amount.

Fig. S17 XRD patterns of fresh and used 2% Bi/Bi₂O₃@g-C₃N₄ samples under the dried temperature of (a) 80 °C and (b) 50 °C.

Notes: Fig. S17 shows the enhanced intensity of XRD diffraction peaks of 2% $Bi/Bi_2O_3@g-C_3N_4$ after reaction, which demonstrates the degree of crystallinity is improved. After photocatalytic reaction, the photocatalyst powder of 2% $Bi/Bi_2O_3@g-C_3N_4$ was separated by centrifugation and dried in 80 °C oven for 24 h. It should be considered that the long-time high temperature could lead to the change of crystallinity degree. Considering the temperature element, we retested the photocatalytic reaction using 2% $Bi/Bi_2O_3@g-C_3N_4$ sample and obtained the dried powder under lower temperature (~50 °C). The XRD pattern in Fig. S17b shows the intensity of diffraction peaks is appropriate to the fresh 2% $Bi/Bi_2O_3@g-C_3N_4$.

Fig. S18 FTIR spectra of fresh and used $2\% Bi/Bi_2O_3@g-C_3N_4$ samples.

Fig. S19 (a) C 1s, (b) N 1s, and (c) O 1s spectra of fresh and used 2% $Bi/Bi_2O_3@g-C_3N_4$ samples.

Fig. S20 (a) Time course of photocatalytic H_2O_2 production and (b) H_2O_2 production rate for g-C₃N₄, 2% Bi/Bi₂O₃@g-C₃N₄ and 2% Bi/Bi₂O₃@g-C₃N₄-Mix samples under pure water.

Fig. S21 (a) Time course of photocatalytic H_2O_2 production and (b) H_2O_2 production rate for 2% Bi@g-C₃N₄, 2% Bi₂O₃@g-C₃N₄ and 2% Bi/Bi₂O₃@g-C₃N₄ samples under pure water.

Fig. S22 (a) UV-Vis diffuse reflectance spectra (inset is plots of transformed Kubelka– Munk function versus photon energy), (b) VB-XPS spectra of Bi₂O₃.

Notes: Fig. S22a shows an obvious absorption edge at 444 nm for Bi₂O₃, which corresponds to the bandgap of 2.82 eV. The VB-XPS spectra in Fig. S22b displays the distances from the valance band (VB) to the Fermi level for Bi₂O₃ is estimated to be 1.05 eV. By applying the reported Fermi levels of Bi₂O₃ to be 1.73 eV (vs. NHE) [*J. Mater. Sci. Technol.* **2020**, *52*, 145], the VB position of Bi₂O₃ is determined to be 2.78 eV. Based on the formula $E_g = E_{VB}-E_{CB}$, the conduction band (CB) position of Bi₂O₃ is calculated to be -0.04 eV.

Fig. S23 (a) PL emission spectra and (b) photocurrent curves for 2% $Bi@g-C_3N_4$, 2% $Bi_2O_3@g-C_3N_4$ and 2% $Bi/Bi_2O_3@g-C_3N_4$ samples.

Fig. S24 (a) Zero-order kinetic fitting curves (b, c) first-order kinetic fitting curves of $g-C_3N_4$, and various Bi/Bi₂O₃@g-C₃N₄ samples.

Fig. S25 Time course of photocatalytic H_2O_2 production over 2% Bi/Bi₂O₃@g-C₃N₄ with different quenchers.

Fig. S26 Comparison of Zeta potentials over pristine $g-C_3N_4$ and various Bi/Bi₂O₃@g-

C₃N₄ samples in pure water.

Fig. S27 The first derivative curve of the relationship between $\Delta E/\Delta V$ and titration volume using 10⁻⁵ mol/L NaOH as the titrant upon g-C₃N₄ and 2% Bi/Bi₂O₃@g-C₃N₄ samples based on potentiometric titration method.

Notes: The detailed experiment process of the potentiometric titration method is described as follows. Pure g-C₃N₄ and Bi/Bi₂O₃@g-C₃N₄ are respectively dispersed into the 10⁻⁵ mol/L HCl solution (pH=5) with the equal quality (20 mg) and volume (30 mL). The two mixture liquids stirred for 3 h and then kept standing for 24 h. The purpose of these operations is to achieve the adsorption equilibrium between the catalyst surface and H^+ . The absorbed solution is obtained via centrifugation and the concentration is determined by potentiometric titration using 10⁻⁵ mol/L NaOH as the titrant. Fig. S27 shows the first derivative curve of the relationship between $\Delta E / \Delta V$ and titration volume (V, mL). It is seen that the titration volume of Bi/Bi₂O₃@g-C₃N₄ is less than that of g-C₃N₄, which indicates the residual concentration of H⁺ is reduced. Fig. S26 shows that Bi/Bi₂O₃@g-C₃N₄ sample possesses more negative surface potential than pure g-C₃N₄ (Zeta potential: -38.6 mV vs. -31.3 mV). Based on the attraction theory between positive and negative charges, the more negative potential of Bi/Bi₂O₃@_g-C₃N₄ could adsorb more positive H⁺ in solution, which leads to the decreased concentration of residual H⁺. Therefore, the peak of titration curve of $Bi/Bi_2O_3(a)g-C_3N_4$ is left-shift in comparison with g-C_3N_4.

Commis	Element Content (At%)				
Sample	Bi	С	Ν	0	
g-C ₃ N ₄	/	42.9	54.36	2.73	
2% Bi/Bi ₂ O ₃ @g-C ₃ N ₄	0.12	47.34	47.46	5.08	

 $\textbf{Table S1} \ The \ element \ content \ of \ g-C_3N_4 \ and \ 2\% \ Bi/Bi_2O_3@g-C_3N_4 \ based \ ICP \ analysis.$

Photocatalyst	Absolute fluorescence quantum yield (%)			
g-C ₃ N ₄	3.40			
1% Bi/Bi ₂ O ₃ @g-C ₃ N ₄	2.11			
2% Bi/Bi ₂ O ₃ @g-C ₃ N ₄	0.82			
3% Bi/Bi ₂ O ₃ @g-C ₃ N ₄	1.49			

Table S2 The absolute fluorescence quantum yield (%) of $g-C_3N_4$ and $Bi/Bi_2O_3@g-C_3N_4$ samples excited at 340 nm in the wavelength range of 390-550 nm.

Table S3 Time constant τ of fluorescence decay curves of g-C_3N_4 and Bi/Bi_2O_3@g-C_3N_4 samples.

Sample	τ_1	%	$ au_2$	%	$ au_3$	%	τ_{ave}
g-C ₃ N ₄	1.20	56.39	5.77	31.34	38.70	12.27	26.96
1% Bi/Bi ₂ O ₃ @g-C ₃ N ₄	1.08	64.03	4.78	28.84	33.90	7.13	19.90
2% Bi/Bi ₂ O ₃ @g-C ₃ N ₄	1.01	62.06	4.54	30.73	30.82	7.20	17.77
3% Bi/Bi ₂ O ₃ @g-C ₃ N ₄	1.10	74.46	5.17	20.78	34.94	4.76	18.15

Photocatalysts	Reaction solution	Dosage (g L ⁻¹)	Light source	H ₂ O ₂ yield (μmol/L/h)	Referenc e
g-C ₃ N ₄ /PDI	Water (30 mL)	1.67	2 kW XL	35.20	[5]
			$(\lambda > 420 \text{ nm})$		
g-C ₃ N ₄ /PDI/rGO	Water (30 mL)	1.67	2 kW XL	40.20	[6]
			(λ>420 nm)		
3DOM	Water (100	1.00	300 W XL	35.00	[7]
$g-C_3N_4-PW_{11}$	mL)	1.00	(λ>320 nm)	55.00	
Ag@U-g-C ₃ N ₄ -	Water (100	1.00	300 W XL	67 50	[8]
NS	mL)	1.00	(λ>420 nm)	07.50	
g-C ₃ N ₄ -PWO	Water (100	1.00	300 W XL	63.00	[9]
	mL)		(λ≥420 nm)		
Bi/g-C ₃ N ₄	Water (50 mL)	1.00	300 W XL	92 50	This work
			(λ≥420 nm)	74.50	

Table S4 Comparison of H_2O_2 production performance of different photocatalysts.

Reference

- [1] P. Hohenberg, W. Kohn, Inhomogeneous electron gas. *Phys. Rev.* 1964, 136, B864-B871.
- [2] W. Kohn, L-J. Sham, Self-consistent equations including exchange and correlation effects. *Phys. Rev.* 1965, 104, A1133-A1138.
- [3] J-P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868.
- [4] E-R, McNellis, J. Meyer, K. Reuter, Azobenzene at coinage metal surfaces: role of dispersive van der waals interactions. *Phys.Rev. B* 2009, *80*, 205414.
- [5] Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T., Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts. *Angew. Chem. Int. Ed.* **2014**, *53* (49), 13454-13459.
- [6] Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T., Carbon Nitride-Aromatic Diimide-Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. J. Am. Chem. Soc. 2016, 138, 10019-10025.
- [7] Zhao, S.; Zhao, X.; Zhang, H.; Li, J.; Zhu, Y., Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. *Nano Energy* 2017, 35, 405-414.
- [8] Cai, J.; Huang, J.; Wang, S.; Iocozzia, J.; Sun, Z.; Sun, J.; Yang, Y.; Lai, Y.; Lin, Z., Crafting Mussel-Inspired Metal Nanoparticle-Decorated Ultrathin Graphitic Carbon Nitride for the Degradation of Chemical Pollutants and Production of Chemical Resources. *Adv. Mater.* 2019, *31*, e1806314.
- [9] Peng, Y.; Wang, L.; Liu, Y.; Chen, H.; Lei, J.; Zhang, J., Visible-Light-Driven Photocatalytic H₂O₂ Production on g-C₃N₄ Loaded with CoP as a Noble Metal Free Cocatalyst. *Eur. J. Inorg. Chem.* 2017, 2017, 4797-4802.