Supplementary Information

Ternary PdNiO Nanocrystals Ornamented Porous CeO₂/Onion-like Carbon for Electrooxidation of Carbon Monoxide: Unveiling the Effect of Supports and Electrolytes

Adewale K. Ipadeola^{a,b}, Aderemi B. Haruna^c, Aboubakr M. Abdullah^{a*}, Rashid S. Al-Hajri^d, Roman Viter^e, Kenneth I. Ozoemena^c,

and Kamel Eid^{b*}

- ^{a.} Centre for Advanced Materials, Qatar University, Doha 2713, Qatar
- ^{b.} Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
- ^{c.} Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa
- d. Petroleum and Chemical Engineering Department, Sultan Qaboos University, Muscat, Oman
- e. Institute of Atomic Physics and Spectroscopy, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia

*Corresponding authors: bakr@qu.edu.qa; kenneth.ozoemena@wits.ac.za; kamel.eid@qu.edu.qa

Fig. S1. (a) SEM, (b) TEM, (c) HRTEM with Fourier-transform (iii) and (d) SAED of Pd/C

Fig. S2. Nanoparticles sizes distribution (a) $PdNiO-CeO_2/OLC$ and (b) PdNiO/OLC and (c) Pd/C

Fig. S3. BET analysis (a) adsorption-desorption isotherm and (b) pore area distribution of ternary PdNiO-CeO₂/OLC and PdNiO/OLC.

Table S1: EIS data for the PdNiO-CeO ₂ /OLC, PdNiO/OLC	, PdNiO-CeO ₂ and Pd/C in CO-saturated- KOH (0	0.1 M).
---	---	---------

	<i>R</i> _s (Ω)	$R_{\rm ct}(\Omega)$	CPE (µS.s ^a)	n
PdNiO-CeO ₂ /OLC	0.98 ± 0.12	45.52 ± 1.76	232.78 ± 0.29	0.74
PdNiO/OLC	0.98 ± 0.18	60.74 ± 1.58	227.64 ± 2.63	0.85
Pd/C	1.34 ± 0.06	71.34 ± 0.34	96.99 ± 1.04	0.76
PdNiO-CeO ₂	1.45 ± 0.38	75.52 ± 1.76	88.94 ± 0.47	0.84

Fig. S4. (a) Voigt electrical equivalent circuit (EEC) model, (b-e) Accelerated stability test (AST), (f) percentage loss of Pd-based nanocatalysts and (g) TEM micrograph after AST of PdNiO-CeO₂/OLC in CO-saturated-HClO₄ (0.1 M).

Fig. S5. (a-d) AST and (e) percentage loss after AST analysis of PdNiO-CeO₂/OLC, PdNiO/OLC, PdNiO-CeO₂ and Pd/C in CO-saturated- KOH (0.1 M).

	<i>R</i> _s (Ω)	<i>R</i> _{ct} (Ω)	CPE (µS.s ^(1-a)	n
PdNiO-CeO ₂ /OLC	2.03 ± 0.27	68.98 ± 1.46	47.76 ± 0.80	0.83
PdNiO/OLC	2.61 ± 0.61	93.40 ± 2.06	40.71 ± 1.61	0.86
Pd/C	2.44 ± 0.85	253.17 ± 6.60	37.74 ± 0.26	0.88
PdNiO-CeO ₂	2.53 ± 0.74	105.63 ± 3.88	25.78 ± 0.26	0.85

Fig. S6. (a-d) AST and (e) percentage degradation after AST analysis of PdNiO-CeO₂/OLC, PdNiO/OLC, PdNiO-CeO₂ and Pd/C in CO-saturated-NaHCO₃ (0.1 M).

Electrocatalysts	Medium / Scan rate (mV/s)	Maximum Current	Refs.
	/ Reference electrode	(mA/cm ²) / Voltage (V)	
Pt(110)-Ru	0.5 M H ₂ SO ₄ / 100 / RHE	^{\$} 0.025 / 0.50	1
Pt-NbOx	0.5 M H ₂ SO ₄ / 20 / RHE	0.500 / 0.75	1
Well-ordered Pt(111)	0.1 M NaOH / 50 / RHE	0.500 / 0.80	2
PtRu (1:1)	0.1 M HClO ₄ / 50 / Ag/AgCl	0.120 / 0.25	3
Pt/SnO _x	1 M HClO ₄ / 20 / RHE	0.870 / 0.70	4
Pt(FAM)	0.1 M H ₂ SO ₄ / 50 / RHE	0.320 / 0.72	5
Pt DEN	0.1 M HClO ₄ / 50 / Hg/Hg ₂ SO ₄	0.200 / 0.30	6
Polycrystalline Pd	0.5 M H ₂ SO ₄ / 20 / RHE	0.175 / 0.90	7
PdAg/C	0.5 KOH/ 20 / RHE	0.944 / 0.60	8
PtPd nanodendrites	1.0 M KOH / 50 / Ag/AgCl	5.100 / -0.15	9
60 wt. % Pt/C	0.5 H ₂ SO ₄ / 10 / SHE	0.200 / 0.64	10
PtRu@h-BN/C	0.1 M H ₂ SO ₄ / 20 / RHE	1.250 / 0.60	11
PtNi multicubes	1 M KOH / 50 / RHE	0.580 / 0.65	12
Pt PSS	0.5 M H ₂ SO ₄ / 50 / RHE	0.300 / 0.80	13
PtPd(50%) nanodendrites	0.5 M H ₂ SO ₄ / 20 / SCE	~3.000 / ~0.60	14
Pd/CMK-3-R8-1500-10	0.5 M H ₂ SO ₄ / 20 / RHE	~ 0.145 / ~ 0.90	15
Pd-Pd(4:1)/C	1.0 M KOH / 50 / Hg/HgO	~ 0.175 / ~ -0.10	16
Pd/Ti ₃ C ₂ T _x	0.1 M HClO ₄ / 50 / Ag/AgCl	0.318 / ~0.90	17
Pd/Ni-MOF/PC	0.1 M NaHCO3/ 50 / RHE	1.220 / 0.83	18
Pd/ZIF-67/C	0.1 M NaHCO3/ 50 / RHE	1.497 / 0.85	19
PdAu/C	0.5 H ₂ SO ₄ / 20 / Ag/AgCl	0.567 / ~ 0.90	20
PdNiO-CeO ₂	0.1 HClO ₄ / 50 / RHE	0.667 / 0.99	Our work
	0.1 KOH / 50 / RHE	1.120 / 0.857	
	0.1 NaHCO ₃ / 50 / RHE	0.574 / 0.923	
PdNiO/OLC	0.1 HClO ₄ / 50 / RHE	1.440 / 1.16	
	0.1 KOH / 50 / RHE	1.330 / 0.81	Our work
	0.1 NaHCO ₃ / 50 / RHE	0.692 / 0.96	
PdNiO-CeO ₂ /OLC	0.1 M HClO ₄ / 50 / RHE	2.500 / 1.10	Our work
	0.1 M KOH / 50 / RHE	2.486 / 0.79	
	0.1 M NaHCO ₃ / 50 / RHE	1.231 / 0.88	

Table S3. CO oxidation electrocatalysis on PdNiO-CeO₂/OLC, PdNiO/OLC, and PdNiO-CeO₂ with literature. Dendrimerencapsulated nanoparticles (DEN), ordered mesoporous carbon (CMK-3-R8), polyhedron with smooth surfaces (PSS), ^{\$}mA

References

- 1. A. Ueda, Y. Yamada, T. Ioroi, N. Fujiwara, K. Yasuda, Y. Miyazaki and T. Kobayashi, *Catal. Today*, 2003, 84, 223-229.
- 2. J. Spendelow, J. Goodpaster, P. J. A. Kenis and A. Wieckowski, J. Phys. Chem. C, 2006, 110, 9545-9555.
- 3. B. Du, S. A. Rabb, C. Zangmeister and Y. Tong, *Phy. Chem. Chem. Phys.*, 2009, **11**, 8231-8239.
- 4. T. Matsui, K. Fujiwara, T. Okanishi, R. Kikuchi, T. Takeguchi and K. Eguchi, J. Power Sources, 2006, 155, 152-156.
- 5. E. G. Ciapina, S. F. Santos and E. R. Gonzalez, J. Electroanaly. Chem., 2010, 644, 132-143.
- 6. M. G. Weir, V. S. Myers, A. I. Frenkel and R. M. J. C. Crooks, *ChemPhysChem*, 2010, **11**, 2942-2950.
- 7. L.-I. Fang, Q. Tao, M.-f. Li, L.-w. Liao, D. Chen and Y.-x. Chen, *Chinese J. Chem. Phys.*, 2010, **23**, 543-548.
- 8. T. Jurzinsky, C. Cremers, K. Pinkwart and J. Tübke, *Electrochim Acta*, 2016, **199**, 270-279.
- 9. K. Eid, Y. H. Ahmad, H. Yu, Y. Li, X. Li, S. Y. AlQaradawi, H. Wang and L. J. N. Wang, *Nanoscale*, 2017, 9, 18881-18889.
- 10. I. J. McPherson, P. A. Ash, L. Jones, A. Varambhia, R. M. Jacobs and K. A. Vincent, *J. Phys. Chem C* 2017, **121**, 17176-17187.
- 11. M. Sun, Y. Lv, Y. Song, H. Wu, G. Wang, H. Zhang, M. Chen, Q. Fu and X. Bao, Appl. Surf. Sci., 2018, 450, 244-250.
- 12. F. Wu, K. Eid, A. M. Abdullah, W. Niu, C. Wang, Y. Lan, A. A. Elzatahry, and G. Xu, ACS Appl. Mater. Interfaces, 2020, **12**, 31309-31318.
- 13. D. Shen, Y. Liu, G. Yang, H. Yu, P.-F. Liu and F. Peng, *Appl. Catal. B*, 2021, **281**, 119522.
- 14. R. M. Asmussen, B. D. Adams, S. Chen, B. Shah and A. Chen, J. Electroanal. Chem. 2013, 688, 151-157.
- 15. V. Celorrio, D. Sebastián, L. Calvillo, A. García, D. J. Fermin and M. Lázaro, *Int. J. Hydrog. Energy*, 2016, **41**, 19570-19578.
- 16. Y. Wang, T. S. Nguyen, X. Liu and X. Wang, *J. Power Sources*, 2010, **195**, 2619-2622.
- 17. B. Salah; K. Eid, A. M. Abdelgwad, Y. Ibrahim, A. M. Abdullah, M. K. Hassan and K. I. Ozoemena, *Electroanalysis*, 2022,

34, 677-683.

- 18. A. K. Ipadeola, K. Eid, A. M. Abdullah, R. S. Al-Hajri and K. I. Ozoemena, *Nanoscale Adv.*, 2022, 4, 5044-5055.
- 19. A. K. Ipadeola, K. Eid, A. M. Abdullah and K. I. Ozoemena, *Langmuir*, 2022, **38**, 11109-11120.
- 20. B. Ulas, A. Kivrak, N. Aktas and H. Kivrak, Fuller. Nanotub. Carbon Nanostructures, 2019, 27, 545-552.