Supporting Information

Mn mixed oxide catalysts supported on Sn-doped CoAl-

LDO for low-temperature NH₃-SCR

Hange Wang^a, Wen Chen^a, Wei Jin^a, Yueli Liu^{a, b, *}

^a State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China

^b Shenzhen Research Institute of Wuhan University of Technology, Shenzhen, 518000,

P. R. China

[*] Correspondent:

Prof. Yueli LIU

Tel.: +86-27-87760159

Fax: +86-27-87760129

E-mail: lylliuwhut@whut.edu.cn (Yueli LIU)

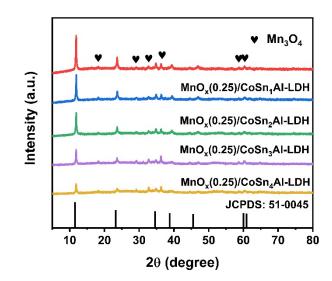


Figure S1. XRD patterns of $MnO_x(0.25)/CoSn_nAl-LDH$ precursors (x=0, 1, 2, 3, 4).

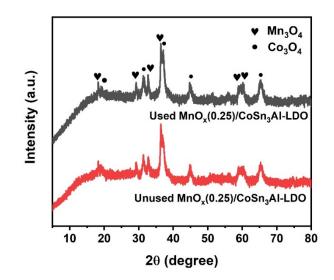


Figure S2. XRD patterns of the used and unused $MnO_x(0.25)/CoSn_3Al-LDO$ catalysts.

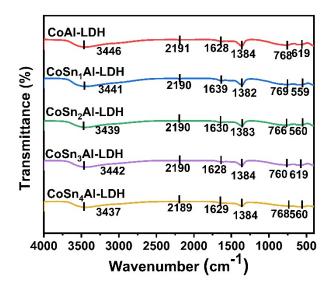


Figure S3. FT-IR spectra of $CoSn_nAl$ -LDH (x=0, 1, 2, 3, 4).

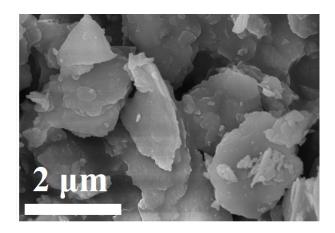


Figure S4. SEM image of CoSn₃Al-LDH.

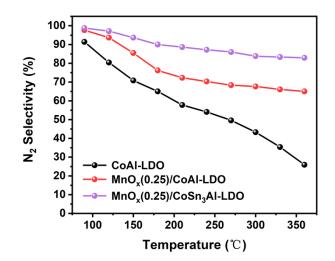


Figure S5. N₂ selectivity of various catalysts. Reaction conditions: [NO]=[NH₃]=500 ppm, [O₂]=3 vol.%, GHSV=30,000 h⁻¹ and N₂ as balance.

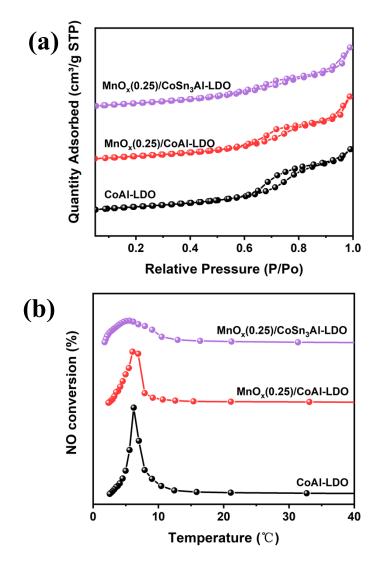


Figure S6. (a) N_2 adsorption-desorption isotherms and (b) pore diameter distribution of various catalysts.

Samples	Specific area	Pore volume	Average pore
	(m^{2}/g)	(cm^3/g)	diameter (nm)
CoAl-LDO	122.83	0.31	6.21
Mn(0.25)/CoAl-LDO	110.35	0.32	6.03
Mn(0.25)/CoSn ₃ Al-LDO	120.14	0.30	5.56

 Table S1. Summary of textual parameters of the various samples.