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S1 Eg value of BaTiO3

1001

389 nm

(9] e
o o

S
(=]

Reflection (%)

N
o

Il 1 n 1 1 1 Il 1 L " 1 n 1 n 1 " L n 1 L
%00 300 400 500 600 700 800 900 200 300 400 500 600 700 800
Wavelength (nm) Wavelength (nm)

Figure S1 (a) UV-Visible diffuse reflection spectrum and (b) Eg values of BaTiO;
photocatalysts.

Figure Sl(a) shows the UV-Visible diffuse reflection spectrum of BaTiO;
photocatalysts. It can be seen from the figure that the reflectance of BaTiO;
photocatalyst decreases sharply in the range of 190-200 nm, remains basically constant
in the range of 200-380 nm, and increases with the increase of wavelength in the range
of 380-900 nm. The Eg values of BaTiO; photocatalysts can be calculated by
calculating the first differential curve of the UV-Visible diffuse reflection spectrum.
The E, values of BaTiOj; photocatalysts can be estimated by the Equation (S1).

he 1240

E (eV)= A, (nm) - A, (nm)

(S1)

where 4 is the position of the peak of the first differential curve. 4 is the Plank
constant and c is the velocity of light. Figure S1(b) shows the Eg values of BaTiO;
photocatalysts. The E, value of BaTiOs photocatalysts is 3.19 eV. Compared with
BaTiOs;, the Eg value of BST photocatalyst has been greatly reduced. Compared with
the Eg value of pure SrTiOj; in literature [S1], the Eg value of BST photocatalyst also

decreased by at least 0.1 eV.

S2 Effect of catalyst content on photocatalytic activity
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Figure S2 Effect of catalyst content on the photocatalytic degradation of TC-HCI of
BSTS5 photocatalysts under simulated sunlight irradiation.

The degradation rate of TC-HCI as a function of catalyst content as shown in
Figure S2. It can be seen that the degradation rate of TC-HCI firstly increases and then
decreases with the increasing of the catalyst content. The possible explanation for this
phenomenon is that total active surface area increases with the increase of catalyst
concentration, so availability of more active sites on BST5 photocatalyst surface. [S2]
In addition, as the catalyst content was increased, the penetration of simulated sunlight
and photoactivated volume of suspension decreased, hence the degradation percentage
of TC-HCI decreases. [S3] However, when the catalyst content excess of 1 g/L, the
degradation percentage of TC-HCI reduced due to light scattering [S4]. Therefore, the

catalyst content of 1 g/L was fixed for photocatalytic degradation of percentage.

S3 XPS spectra of BSTS photocatalysts after photocatalysis
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Figure S3 (a) XPS survey scan spectra, (b) Ba 3d, (c) Sr 3d, (d) Ti 2p, (e) Ols, (f) K2p

and (g) Cls spectra of BSTS photocatalysts after photocatalysis.

Figure S3 shows the XPS survey scan spectra, Ba 3d, Sr 3d, Ti 2p, Ols, K2p and

Cls spectra of BSTS photocatalysts after photocatalysis. As can be seen from the Figure



S3, except for the addition of K2p peak, no peaks of other elements are found, and the
positions of peaks of all elements are consistent with those of BST5 photocatalyst
before photocatalysis. The K2p peak is mainly caused by the use of KOH before the
pH of the reaction solution is adjusted, which further indicates that the BSTS5
photocatalyst is stable. In addition to the calibration peak, the characteristic peaks of C-
O and O=C-O also appear in Cls spectrum. These peaks can be attributed to the small
molecular organic matter of carbon remaining on the surface of BSTS photocatalyst

after the degradation of TC-HCI.
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S4 HPLC-MS analysis
(@ (®) Pl (€)
PS . P2
7.14 0.84 min EsH109 1.17min  202.00 B
N + ¢ ESI QIMS OH o [FEESIQIMS 910
8 |ls98 OH 8
5 £ CHy
] E
z | B
< OH = CH
] o 3
Z | 122480586 2
= 148(86 OH o = 14883
o | 10092 [171.90 28862 S| Besi—
63871 % 55 191,99 o
'l bl et o 2 ml 5 1897
113,95 | 2os.70,
L L G L g L 11 JTTY PRTE PO IO BRI TR TR s R
01 2 3 4 5 6 7 8 9 10 11 12 13 14 100 200 300 400 500 600 700 100 200 300 400 500 600 700
Time (min) mz wz
P )
e l:)ﬁﬁnun 21805 m o ]':Sl-hmn 200.04
i c,,H 0O 6 .84 min 246.07
o |+ cESIQIMS 181372 o |+ CESIQIMS Claf1a% o [FEESIQIMS CioH129
3
£ oH o 2 OH o OH 2 o
3 5 g
k= =] =
=S g 5 o)
2 E E
F 5 :
5 = k=
~ L )
} a2 s po1.02
OH
130.00 448.16 129.96200.04
41.96 58 129.96
41.90 4888 i
e sl Jli i peiy o [128 omsr,  eem o (0l arepe |
100 200 300 400 500 6800 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700
m'z m'z m/z
(@ M [p7 @ P8
Fe 27012
7.89 min 8.95min 9.24 min i
2 + ESIQIMS -
g |teEstQvs 3 < ESI QIMS g|*e Q c M0,
g g § o oH 0 OH
-] | ) o
g = o g I
3 2 =)
= =
= < 270.11 <
£ E 2
) ~ 200,05 I~
|
130.00 h33.03
L 33
200.07 14194 1488 200.06
12954 4o \ \PM L_ﬂitg 284,00 lll 41"75129'i5;‘996k
N RNEES i B S R S S g |l o5 | PRI | | S e hex M T T O S R IR
100 200 300 400 m’ZSOU 600 700 100 200 300 400m:2 500 600 700 100 200 300 400m “.1500 600 700

Figure S4 HPLC-MS chromatogram of TC-HCl and the corresponding mass spectra

after 15 min of visible-light irradiation by BST5 photocatalysts.

Quantitative analysis of the intermediates for the photocatalytic degradation of

TC-HCI by BSTS5 photocatalysts will be helpful to understand its degradation




mechanism and pathway. HPLC-MS method is an effective method to detect
intermediate products of TC-HCI degradation. Figure S4 shows the HPLC-MS
chromatogram of TC-HCI and the corresponding mass spectra after 15 min of visible-
light irradiation by BSTS5 photocatalysts. In Figure S4(a), the peaks observed in 0.84,
1.17, 1.66, 4.52, 5.66, 6.84, 7.14, 7.89, 8.95 and 9.24 min were named P1, P2, P3, P4,
PS5, P6, P7 and PS8, respectively. Based on the above analysis, several mass-to-charge
ratio (m/z) peaks at 148.86, 166.86, 200.04, 218.05, 246.07,270.12,318.11, and 415.06
were observed, indicating the formation of intermediates due to the m/z peak of TC-
HCI is 445.43. The relevant molecular and structural formulas are shown in Figure
S4(b)-(1). According to these data, the proposed degradation pathway of TC-HCI in the
presence of BSTS5 photocatalysts as shown in Figure S5. In the early stage of
degradation, photocatalysis mainly breaks the -CH; bond connected with N element
and the adjacent -OH in TC-HCI. Subsequently, an open-loop reaction was performed
to break the -NH, and -CONH, bonds. The -CH; and -OH bonds were further broken
when the illumination time continued to increase. The -C=0O and -OH were further
destroyed to form organic with m/z=246.07. The -OH broke again, forming a polycyclic
organics with m/z=218.05. Subsequently, an open-loop reaction is performed that may
produce organics with m/z=200.04, m/z=166.86, and m/z=148.86. Eventually, these

small molecules break down into CO,, H,O and NH4* under continuous illumination.
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Figure S5 Proposed degradation pathway of TC-HCI in the presence of BSTS

photocatalysts.

S4 Toxicity estimation
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Figure S6 Acute toxicity for the (a) fathead minnow, (b) daphnia magna and (c) oral



rat, (d) bioconcentration factor, (e) development toxicity and (f) mutagenicity of TC-
HCI and degradation intermediates.

To exhaustive evaluate the toxicity of TC-HCI and intermediate products, the
acute toxicity for the fathead minnow, daphnia magna and oral rat, bioaccumulation
factors, developmental toxicity and mutagenicity of TC-HCI and degradation
intermediates were detail predicted by the Toxicity Estimation Software Tool
(T.E.S.T.) [S5-S7] Figure S6 (a)-(c) shows the acute toxicity for the fathead minnow,
daphnia magna and oral rat. Although the toxicity of some intermediates was very high,
the toxicity of the final product was reduced, suggesting that the predictions of the three
different models were credible. Except for P1, P7 and PS5, the bioaccumulative factors
of other intermediates are significantly increased as shown in Figure S6(d). With the
exception of P8, the developmental toxicity of other intermediates was reduced
throughout the removal process as shown in Figure S6(e). In Figure S6(f), TC-HCI, P7
and P6’ are “mutagenic positive”, while other intermediates are “mutagenic negitive”.
By toxicity estimation, the toxicity of some intermediates decreased and some products
remained. Therefore, during the photocatalytic degradation of TC-HCl by BSTS5
photocatalysts, the illumination time should be extended to reduce the toxicity of the

reaction product.
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