Rational design of hydroxyapatite/graphite-supported bimetallic Cu-M (M = Cu, Fe, Co, Ni) catalysts for enhancing the partial hydrogenation of dimethyl oxalate to methyl glycolate

Mohamed Abbas ^{a,,b,*}, JiaMing Wang ^c, Paweł Stelmachowski ^a, Jiangang Chen^{c,*} and Andrzej Kotarba ^{a,*}

^a Faculty of Chemistry, Jagiellonian University, Ul. Gronostajowa 2, Krakow, 30-387, Poland

^b Ceramics Department, National Research Centre, El-Behouth Str., 12622 Cairo, Egypt

° State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences,

Taiyuan, 030001, China

Corresponding author:

Prof. Dr. Andrzej Kotarba (E-mail: kotarba@chemia.uj.edu.pl)

Prof. Jiangang Chen (E-mail: chenjg@sxicc.ac.cn)

Prof. Mohamed Abbas (E-mail: abbas@chemia.uj.edu.pl, mohamed_abbas83@yahoo.com)

Address: Faculty of Chemistry, Jagiellonian University, Ul. Gronostajowa 2, Krakow, 30-387, Poland.

Tel: +48-126282586

Types of catalyst	SBET a (m2g)	Dpore b (nm)	$\Phi_{ m WF}$	Cu ⁺ /(Cu ⁺ +Cu ⁰) %
HAp/G/Cu 13	92	64	-	65.15
HAp/G/Cu 17	82	68	4.7 eV	56.5
HAp/G/Cu 20	74	55	-	51
HAp/G/CuFe	102	127	4.61 eV	59.15
HAp/G/CuCo	131	350	4.83 eV	50
HAp/G/CuNi	154	180	4.71 eV	16.27

Table S1 Physicochemical properties of the studied catalysts

Catalyst type	Cu			Со			Ni			Fe						
	2p _{3/2}		2p _{1/2}		2p _{3/2}		2p _{1/2}		2p _{3/2}		2p _{1/2}		2p _{3/2}		2p _{1/2}	
HAp/G/Cu 17	935.02	943.60	955.07	963.73												
HAp/G/CuFe	933.86	943.08	953.75	963.07									711.50	719.35	725.19	734.27
HAp/G/CuCo	934.69	943.12	954.64	963.08	781.71	785.72	797.59	803.6 8								
HAp/G/CuNi	935.81	943.98	955.77	963.66					857.07	862.64	874.77	880.61				

Table S 2 Binding energy (eV) value of Cu element and transition metals (Co,Fe and Ni) doped HAp/G/Cu catalysts (related to Fig. 9)

Types of spent catalysts	Cu								
	2p	3/2	2p _{1/2}						
States of elements	Cu ^{+/0}	Cu ²⁺	Cu ^{+/0}	Cu ²⁺					
HAp/G/Cu 13	932.71	934.05	952.53	954.51					
HAp/G/Cu 17	932.71	933.82	852.52	954.60					
HAp/G/Cu 20	932.74	934.06	952.54	954.45					
HAp/G/CuFe	932.82	934.43	952.63	953.68					
HAp/G/CuCo	932.76	934.26	952.63	-					
HAp/G/CuNi	932.71	-	952.54	-					

Table S3 Binding energy (eV) value of Cu element for spent catalysts (related to Fig. 13)

Fig. S1 XRD for (A) bare-Graphite and (B) Hydroxyapatite/Graphite composite (support material)

Fig. S2 (a, b) STEM/HAADF image and (c-h) EDS maps analysis of all elements of Cu/HAp/G omposite catalyst.

Fig. S3 (A) TEM image and (B) High magnification TEM image of HAp/G/Cu (17wt%) composite catalyst

Fig. S4 (A) Low magnification TEM image and (B, C,D) High magnification TEM image of Cu/HAp/G (20 wt%) composite catalyst

Fig. S5 (A) and (B) TEM images of HAp/G/CuCo composite catalyst

Fig. S6 (a) STEM/HAADF image and (b-h) EDS maps analysis of all elements of HAp/G/CuFe composite catalyst.

Fig. S7 EDS point analysis for HAp/G/CuFe composite catalyst

Fig. S8 H₂-TPR analysis of (A, B and C) un-doped Cu/HAp/G catalysts with different Cu loading and (D, E and F) Fe-, Co-, Ni-promoted Cu/HAp/G composite catalysts.

Fig. S9 FTIR of the un-promoted and Fe-, Co-, Ni-promoted HAp/G/Cu composite catalysts.

Fig. S10 Selectivity ratio of DMO hydrogenation products of (A) HAp/G/Cu catalysts with different Cu loading and (B) Fe, Co and Ni doped HAp/G/Cu catalysts. The symbols: MF: methyl formate, MA: methyl acetate, EtOH: ethyl alcohol, E: ether and EG: ethylene glycol.

Fig. S11 Stability curve for MG selectivity of the spent HAp/G/CuCo composite catalyst after 200 h of reaction time. Reaction condition: H_2 /DMO molar ratio of 200, P= 2 MPa, T=220 °C and WLHSV(DMO)=0.85 g/(g h)