### **Supplementary information**

## Sustainable synthesis of azobenzenes, quinolines and quinoxalines *via* oxidative dehydrogenative couplings catalysed by reusable transition metal oxide–Bi(III) cooperative catalysts

Marianna Kocsis,<sup>a</sup> Kornélia Baán,<sup>b</sup> Sándor B. Ötvös,<sup>c</sup> Ákos Kukovecz,<sup>b</sup> Zoltán Kónya,<sup>b</sup> Pál Sipos,<sup>d</sup> ③István Pálinkó<sup>a</sup> and Gábor Varga<sup>e</sup>\*¥

<sup>a</sup>Department of Organic Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary

<sup>b</sup>Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary

<sup>c</sup>Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz, A-8010 Austria

<sup>d</sup>Department of Inorganic and Analytical Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 7, Szeged, H-6720 Hungary

<sup>e</sup>Department of Physical Chemistry and Materials Science and Materials and Solution Structure Research Group, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720 Hungary

\*Corresponding author: G. Varga (gabor.varga5@chem.u-szeged.hu)

⑤ passed away

¥ Present address: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia

#### **SECTION S1.**

#### Supporting results and comparative data

| Composites                                       | <b>Bulk composition*</b>                                                                      | Specific surface area<br>(m²/g)** |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------|
| Bi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | (BiO) <sub>2</sub> (CO <sub>3</sub> ) <sub>0.93</sub> (OH) <sub>0.28</sub>                    | 32                                |
| CoBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub> | Co <sub>0.16</sub> (BiO) <sub>2</sub> (CO <sub>3</sub> ) <sub>1.04</sub> (OH) <sub>1.04</sub> | 48                                |
| MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub> | Mn <sub>0.28</sub> (BiO) <sub>2</sub> (CO <sub>3</sub> ) <sub>1.02</sub> (OH) <sub>0.36</sub> | 38                                |
| NiBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub> | Ni <sub>0.69</sub> (BiO) <sub>2</sub> (CO <sub>3</sub> ) <sub>1.02</sub> (OH) <sub>3.94</sub> | 44                                |

Table S1 The compositions of the as-prepared bismutite supported composites.

\*Determined by the combination of ICP-MS and TG measurement \*\*Determined by BET measurements

**Table S2** Optimisation procedure of the bismutite-based catalysts promoted oxidative dehydrogenative homocoupling of aniline. Reaction conditions: 0.5 ml solvent, T = 64-175 °C for 12–72h and 10 mol% catalyst; c (aniline) = 0.6 M (when using other solvents than aniline).

| Numbers | Composites                                         | Solvent             | Temperature<br>(°C) | Catalyst<br>loading<br>(mol%) | Reaction<br>time (h) | Aniline<br>conversion<br>(mol%) | Azobenzene<br>selectivity<br>(mol%) | Azobenzene<br>yield<br>(mol%) |
|---------|----------------------------------------------------|---------------------|---------------------|-------------------------------|----------------------|---------------------------------|-------------------------------------|-------------------------------|
| 1       |                                                    | DMSO                | 150                 |                               | 72                   | 3                               |                                     |                               |
| 2       | Bi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>     | DMSO                | 150                 | 10                            | 72                   | 7                               | 90                                  | 6                             |
| 3       | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | DMSO                | 150                 | 10                            | 72                   | 29                              | 100                                 | 29                            |
| 4       | CoBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | DMSO                | 150                 | 10                            | 72                   | 19                              | 100                                 | 19                            |
| 5       | NiBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | DMSO                | 150                 | 10                            | 72                   | 14                              | 100                                 | 14                            |
| 6       | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub> * | DMSO                | 150                 | 10                            | 72                   | 2                               | 100                                 | 2                             |
| 7       | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | DMSO                | 110                 | 10                            | 72                   | 9                               | 100                                 | 12                            |
| 8       | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | DMSO                | 175                 | 10                            | 72                   | 30                              | 100                                 | 30                            |
| 9       | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | methanol            | reflux              | 10                            | 72                   | 5                               | 100                                 | 5                             |
| 10      | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | toluene             | reflux              | 10                            | 72                   | 20                              | 75                                  | 15                            |
| 11      | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | acetonitrile        | reflux              | 10                            | 72                   | —                               |                                     |                               |
| 12      | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | γ-<br>valerolactone | reflux              | 10                            | 72                   | 15                              | 100                                 | 15                            |
| 13      | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 150                 | 10                            | 72                   | 71                              | 100                                 | 71                            |
| 14      | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | reflux              | 10                            | 72                   | 73                              | 96                                  | 70                            |
| 15      | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 110                 | 10                            | 72                   | 35                              | 80                                  | 28                            |
| 16      | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 150                 | 5                             | 72                   | 49                              | 90                                  | 44                            |
| 17      | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 150                 | 20                            | 72                   | 79                              | 97                                  | 77                            |
| 18      | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 150                 | 10                            | 48                   | 34                              | 100                                 | 34                            |
| 19      | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 150                 | 10                            | 24                   | 16                              | 100                                 | 16                            |
| 20      | CoBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 150                 | 10                            | 48                   | 75                              | 100                                 | 75                            |
| 21      | CoBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 150                 | 10                            | 24                   | 51                              | 100                                 | 51                            |
| 22      | CoBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 150                 | 10                            | 12                   | 23                              | 100                                 | 23                            |
| 23      | CoBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 150                 | 5                             | 72                   | 48                              | 100                                 | 48                            |
| 24      | CoBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   |                     | 150                 | 2.5                           | 72                   | 12                              | 100                                 | 12                            |

**Table S3** Selectivity test of the as-prepared  $CoBi_2O_2CO_3$  catalyst in oxidative dehydrogenative heterocoupling of aniline derivatives. Reaction conditions: 0.5 ml solvent, T = 150 °C for 72h and 10 mol% catalyst; c (aniline) = 0.6 M, c (substituted aniline) = 0.5 M.

| R          | NH <sub>2</sub> | MBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub><br>aniline, 150°C, 7 | 2 h R1                        | N≈ <sub>N</sub> 5    | +                         |                               |                      |
|------------|-----------------|----------------------------------------------------------------------|-------------------------------|----------------------|---------------------------|-------------------------------|----------------------|
|            | Solvent         | Temperature<br>(°C)                                                  | Catalyst<br>loading<br>(mol%) | Reaction<br>time (h) | Conversion<br>of 1 (mol%) | Selectivity<br>of 3<br>(mol%) | Yield of 3<br>(mol%) |
| R= o-OMe   | DMSO            | 150                                                                  | 10                            | 72                   | 17                        | 88                            | 15                   |
| R = p - Br | DMSO            | 150                                                                  | 10                            | 72                   | 28                        | 96                            | 27                   |
| R = p-Me   | DMSO            | 150                                                                  | 10                            | 72                   | 25                        | 95                            | 24                   |
| R = o-OMe  | toluene         | reflux                                                               | 10                            | 72                   | 51                        | 90                            | 46                   |
| R = p - Br | toluene         | reflux                                                               | 10                            | 72                   | 54                        | 96                            | 52                   |
| R = p - Me | toluene         | reflux                                                               | 10                            | 72                   | 54                        | 92                            | 50                   |

**Table S4** Comparative table of the catalytic ability of the as-prepared  $CoBi_2O_2CO_3$  catalystand the benchmark catalysts for the oxidative dehydrogenative homo- and heterocoupling ofdifferent anilines.

| $\begin{array}{c} & \underset{R_{1}}{\overset{NH_{2}}{\longrightarrow}} \underbrace{MBi_{2}O_{2}CO_{3}}_{\text{aniline, 150°C, 72 h}} \\ & \underset{R_{1}}{\overset{N \otimes N}{\longrightarrow}} \\ & \underset{R_{1}}{\overset{N \longrightarrow N}{\longrightarrow}} \\ & \underset{R_{1}}{N$ |         |                     |                               |                      |                     |                      |                                 |                               |                         |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-------------------------------|----------------------|---------------------|----------------------|---------------------------------|-------------------------------|-------------------------|------------|
| Catalyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Solvent | Temperature<br>(°C) | Catalyst<br>loading<br>(mol%) | Reaction<br>time (h) | Additive            | Atmosphere           | Aniline<br>conversion<br>(mol%) | Selectivity<br>of 3<br>(mol%) | Yield<br>of 3<br>(mol%) | References |
| CoBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 150                 | 10                            | 72                   |                     | air                  | 35-100                          | 75–100                        | 34–95                   | This work  |
| CuBr <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | toluene | 60                  | 20                            | 24                   | 60 mol%<br>pyridine | 1 bar O <sub>2</sub> | 60–100                          | 50-100                        | 42–69                   | 1          |
| meso-<br>Mn <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | toluene | 110                 | 32                            | 12                   |                     | air                  | 80–100                          | 28–92                         | 28–87                   | 2          |

Table S5 Comparative table of the catalytic ability of the as-prepared  $CoBi_2O_2CO_3$  catalyst and the benchmark catalysts for the oxidative dehydrogenative couplings for the synthesis of quinolines.

| Y`                                               | intonnes.       |                     |                               |                          |                                                                    |                                |                                 |                                |                          |            |
|--------------------------------------------------|-----------------|---------------------|-------------------------------|--------------------------|--------------------------------------------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------|------------|
|                                                  |                 |                     | NH <sub>2</sub>               | MBi <sub>2</sub> 0       | $D_2CO_3$                                                          | →                              | N N                             |                                |                          |            |
|                                                  |                 | R <sub>1</sub>      |                               | propane-1,<br>M: Mn(II), | 3-diol, 150°C<br>Co(II), Ni(II)                                    |                                |                                 |                                |                          |            |
| Catalyst                                         | Solvent         | Temperature<br>(°C) | Catalyst<br>loading<br>(mol%) | Reaction<br>time (h)     | Additive                                                           | Atmosphere                     | Aniline<br>conversion<br>(mol%) | Selectivity<br>of dp<br>(mol%) | Yield<br>of dp<br>(mol%) | References |
| CoBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub> | _               | 150                 | 10                            | 48                       | _                                                                  | air                            | 92–100                          | 65–100                         | 65–<br>100               | This work  |
| RuCl <sub>3</sub> ×nH <sub>2</sub> O             | mesitylene      | 164                 | 5                             | 16                       | 10 mol%<br>phosphine,<br>5%<br>MgBr <sub>2</sub> *OEt <sub>2</sub> | argon                          | 20–61                           | 100                            | 20–61                    | 3          |
| Pt/Al <sub>2</sub> O <sub>3</sub><br>+<br>ZnO    | NMP             | 175                 | 1.7<br>+<br>4.5               | 16–45                    | 5% p-<br>TSA*H <sub>2</sub> O                                      | argon                          | 15–70                           | 80–100                         | 18–62                    | 4          |
| (Pd(OAc) <sub>2</sub> )                          | _               | 150                 | 5                             | 16                       | 10 mol%<br>ligand +<br>20 mol%<br>acid                             | oxygen                         | 55-82                           | 100                            | 55–82                    | 5          |
| Mn(I)-PNP                                        | toluene         | 140*                | 5                             | 24                       | 210 mol% t-<br>BuOK;<br>100 mol%<br>KOH                            | pressured<br>gas + argon       | 61–91                           | 100                            | 61–91                    | 6          |
| Co(II)-PNP                                       | toluene         | 120*                | 2                             | 24                       | 5 mol% t-<br>BuOK<br>2 mol%                                        | pressured<br>gas + argon       | 38–65                           | 100                            | 38–65                    | 7          |
| Knölker–Fe                                       | toluene         | 140*                | 2                             | 48                       | $PPh_3 + 10-$<br>30 mol% t-<br>BuOK                                | pressured<br>gas               | 55–67                           | 100                            | 55–67                    | 8          |
| Mn(I)–NNN                                        | toluene         | 130*                | 2                             | 20                       | 100 mol% t-<br>BuOK                                                | pressured<br>gas +<br>nitrogen | 60–75                           | 100                            | 60–75                    | 9          |
| [Ni(II)(MeTAA)],                                 | toluene         | 90                  | 8                             | 36                       | 200 mol% t-<br>BuOK                                                | air                            | 32–83                           | 100                            | 32–83                    | 10         |
| Ni(II)–NNNN                                      | toluene         | 135*                | 2                             | 24                       | 100 mol% t-<br>BuOK                                                | pressured<br>gas + argon       | 46–88                           | 100                            | 46–88                    | 11         |
| Ni(II)–NNNN                                      | toluene         | 80                  | 4                             | 10–30                    | 50 mol% t-<br>BuOK                                                 | air                            | 49–90                           | 100                            | 49–90                    | 12         |
| Cu(II)–NNN**                                     | toluene         | 85                  | 1                             | 18                       | 50 mol%<br>NaOH                                                    | air                            | 40–96                           | 100                            | 40–96                    | 13         |
| SNS-Co(II)                                       | m-xylene        | 139                 | 2.5                           | 24                       | 110 mol% t-<br>BuOK                                                | argon                          | 63–57                           | 100                            | 63–87                    | 14         |
| Co(II)–NNN                                       | toluene         | 150*                | 5                             | 12                       | 100 mol%<br>CsOH×H <sub>2</sub> O                                  | pressured<br>gas + argon       | 55–93                           | 100                            | 55–93                    | 15         |
| Mn(II)–NNN                                       | toluene         | 120*                | 5                             | 24                       | 75 mol%<br>KOH                                                     | pressured<br>gas               | 35–90                           | 100                            | 35–90                    | 16         |
| Ru(II)-PCy <sub>3</sub>                          | 1.4-<br>dioxane | 80                  | 1                             | 1                        | 100 mol%<br>KOH                                                    | argon                          | 22–100                          | 100                            | 22–100                   | 17         |
| Re(I)–PN(H)P                                     | toluene         | 150*                | 1                             | 24                       | 10 mol% t-<br>BuOK                                                 | pressured<br>gas + argon       | 87–98                           | 90–96                          | 87–96                    | 18         |
| Organo-Ru(II)–<br>NNN                            | toluene         | 100                 | 0.01                          | 6                        | 15 mol%                                                            | argon                          | 72–98                           | 100                            | 72–98                    | 19         |

\*over boiling point; \*\* H<sub>2</sub>O<sub>2</sub> waste; dp: desired product yellow background: amino benzyl alcohols + ketones/alcohols orange background: anilines + diols (alcohols)

**Table S6** Some variations in the reaction conditions of oxidative dehydrogenative heterocoupling of o-phenylenediamines and ethylene-glycol. Applied reaction conditions: 1 equiv. (0.25 M) o-phenylenediamines or its derivatives, ethylene-glycol of 2 ml, 110 °C for 24h and 10 mol% catalyst.

|         |                                                  | NH <sub>2</sub>     | M(II)(BiO)                    | <sub>2</sub> CO <sub>3</sub> |                                 | N N                            |                       |
|---------|--------------------------------------------------|---------------------|-------------------------------|------------------------------|---------------------------------|--------------------------------|-----------------------|
|         | R <u>−   </u>                                    | etyle               | ene-glycol, 1                 | →<br>10 °C, 24h              | R II                            |                                |                       |
|         | $\sim$                                           | NH <sub>2</sub>     | 8-,, -                        |                              |                                 | N                              |                       |
| R-group | Composites                                       | Temperature<br>(°C) | Catalyst<br>loading<br>(mol%) | Reaction<br>time (h)         | Aniline<br>conversion<br>(mol%) | Selectivity<br>of dp<br>(mol%) | Yield of dp<br>(mol%) |
| Н       |                                                  |                     |                               |                              | 100                             | 100                            | 100                   |
| p-Br    |                                                  |                     |                               |                              | 60                              | 100                            | 60                    |
| p-Cl    | MnBi <sub>2</sub> O <sub>2</sub> CO <sub>2</sub> | 110                 | 10                            | 24                           | 73                              | 41                             | 30                    |
| p-nitro | WIIID1202003                                     | 110                 | 10                            | 27                           | 11                              | 100                            | 11                    |
| p-COOH  |                                                  |                     |                               |                              | 100                             | 19                             | 19                    |
| p-Me    |                                                  |                     |                               |                              | 58                              | 100                            | 58                    |
| Н       |                                                  |                     |                               |                              | 100                             | 100                            | 100                   |
| p-Br    |                                                  |                     |                               |                              | 66                              | 100                            | 66                    |
| p-Cl    | CoBi O.CO.                                       | 110                 | 25                            | 24                           | 45                              | 76                             | 34                    |
| p-nitro | C0D12O2CO3                                       |                     | 2.5                           | 27                           | 99                              | 100                            | 99                    |
| p-COOH  |                                                  |                     |                               |                              | 100                             | 50                             | 50                    |
| p-Me    |                                                  |                     |                               |                              | 55                              | 100                            | 55                    |
| Н       |                                                  |                     |                               |                              | 100                             | 100                            | 100                   |
| p-Br    |                                                  |                     |                               |                              | 93                              | 100                            | 93                    |
| p-Cl    | CoBi.O.CO.                                       | 110                 | 10                            | 24                           | 86                              | 86                             | 74                    |
| p-nitro | C0D12O2CO3                                       | 110                 | 10                            | 27                           | 100                             | 100                            | 100                   |
| p-COOH  |                                                  |                     |                               |                              | 100                             | 78                             | 78                    |
| p-Me    |                                                  |                     |                               |                              | 95                              | 100                            | 95                    |
| Н       |                                                  |                     |                               |                              | 100                             | 89                             | 89                    |
| p-Br    |                                                  |                     |                               |                              | 93                              | 80                             | 75                    |
| p-Cl    | CoBioOcO                                         | 90                  | 10                            | 24                           | 79                              | 65                             | 51                    |
| p-nitro | $CODI_2O_2CO_3$                                  | 20                  | 10                            | ∠ <b>⊤</b>                   | 100                             | 85                             | 85                    |
| p-COOH  |                                                  |                     |                               |                              | 95                              | 60                             | 57                    |
| p-Me    |                                                  |                     |                               |                              | 90                              | 82                             | 74                    |

dp: desired product

**Table S7** Comparative table of the catalytic ability of the as-prepared  $CoBi_2O_2CO_3$  catalyst and the benchmark catalysts for the oxidative dehydrogenative couplings for the synthesis of quinoxalines.

|                                                    |                  |                     | NH                            | I <sub>2</sub> Mo    | (II)(BiO) <sub>2</sub> CO <sub>3</sub>             | ،<br>۱                         | $\frown \frown \frown$          | N                              |                          |            |
|----------------------------------------------------|------------------|---------------------|-------------------------------|----------------------|----------------------------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------|------------|
| R II etylene-glycol, 110 °C, 24h R II NH2          |                  |                     |                               |                      |                                                    |                                |                                 |                                |                          |            |
| Catalyst                                           | Solvent          | Temperature<br>(°C) | Catalyst<br>loading<br>(mol%) | Reaction<br>time (h) | Additive                                           | Atmosphere                     | Aniline<br>conversion<br>(mol%) | Selectivity<br>of dp<br>(mol%) | Yield<br>of dp<br>(mol%) | References |
| CoBi <sub>2</sub> O <sub>2</sub> CO <sub>3</sub>   | —                | 110                 | 10                            | 24                   | _                                                  | air                            | 86–100                          | 78–100                         | 78–<br>100               | This work  |
| Mn(I)–PNP                                          | toluene          | 150*                | 2                             | 36                   | 3–100<br>mol% KH                                   | argon                          | 45–99                           | 50–98                          | 35–95                    | 20         |
| Mn(I)–NNS                                          | —                | 140                 | 4                             | 20                   | 27 mol%<br>KOH<br>3 mol%                           | argon                          | 53-82                           | 100                            | 53-82                    | 21         |
| Mn(I)(CO) <sub>5</sub> Br                          | toluene          | 130*                | 2                             | 36                   | ligand + 40<br>mol% t-<br>BuOK                     | argon                          | 43-83                           | 100                            | 43-83                    | 22         |
| Co(OAc) <sub>2</sub> -<br>Phen/Carbon-<br>800      | toluene          | 150*                | 1.5                           | 24–36                | 25–<br>75 mol%<br>CsOH×H <sub>2</sub> O<br>50 mol% | argon                          | 64–96                           | 100                            | 64–96                    | 23         |
| NiBr <sub>2</sub>                                  | toluene          | 110                 | 5                             | 24                   | $Cs_2CO_3 + 5 mol\%$ ligand                        | argon                          | 79–98                           | 90–100                         | 70–98                    | 24         |
| Ni(II)–NNOO                                        | toluene          | 80                  | 5                             | 8                    | 50 mol% t-<br>BuOK                                 | oxygen                         | 70–92                           | 100                            | 70–92                    | 25         |
| Co(II)–NNN                                         | toluene          | 150*                | 5                             | 24                   | 120 mol%<br>CsOH×H <sub>2</sub> O                  | pressured<br>gas + argon       | 70–93                           | 100                            | 75–93                    | 15         |
| RuCl <sub>2</sub> (PPh <sub>3</sub> ) <sub>3</sub> | diglyme          | 162                 | 4                             | 20                   | 400 mol%<br>KOH                                    | air                            | 63-82                           | 100                            | 63-82                    | 26         |
| Ir-P^N^P                                           | THF              | 90*                 | 0.06                          | 24                   | 200 mol% t-<br>BuOK                                | pressured<br>gas +<br>nitrogen | 61–89                           | 100                            | 61–89                    | 27         |
| Re(I)–PNP                                          | toluene          | 120*                | 0.05                          | 6                    | 50 mol% t-<br>BuOK                                 | argon                          | 67–85                           | 100                            | 67–85                    | 28         |
| organo-Ir–<br>NNO                                  | H <sub>2</sub> O | 120*                | 2.5                           | 24                   | 150 mol%<br>KOH<br>50 mol%                         | argon                          | 69–88                           | 90–98                          | 65–84                    | 29         |
| Ru <sub>3</sub> (CO) <sub>12</sub>                 | toluene          | 150*                | 1                             | 8                    | $CsOH \times H_2O$<br>+ 3 mol%<br>DPPH             | nitrogen                       | 36–84                           | 100                            | 36-84                    | 30         |
| Au/CeO <sub>2</sub>                                | diglyme          | 140                 | 1                             | 24-30                |                                                    | air                            | 94–99                           | 35–92                          | 35–91                    | 31         |

\*over boiling point; green background: reusable; **dp:** desired product

**Table S8** Oxidative dehydrogenative heterocoupling of o-phenylenediamines and ethylene glycol. Reaction conditions: 1 equiv. (0.25 M) o-phenylenediamine or its substituted derivative, 2 mL ethylene glycol, 110 °C for 24h and 10 mol% catalyst.

| R <sub>1</sub> NH <sub>2</sub><br>NH <sub>2</sub> | $\begin{array}{c} \hline CoBi_2O_2CO_3 \\ \hline \\ ethylene glycol, 110^{\circ}C \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ |                    |          |  |  |  |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--|--|--|--|--|
| Desired product                                   | Yield of 2 (mol%)                                                                                                                                | Isolated yield (%) | E-factor |  |  |  |  |  |
| $R_1 = H$                                         | 100*                                                                                                                                             | 85                 | 2.1      |  |  |  |  |  |
| $R_1 = 4-Br$                                      | 93                                                                                                                                               | 80                 | 2.9      |  |  |  |  |  |
| $R_1 = 4-C1$                                      | 74                                                                                                                                               | 63                 | 5.6      |  |  |  |  |  |
| $R_1 = 4$ -COOH                                   | 78                                                                                                                                               | 64                 | 4.9      |  |  |  |  |  |
| $R_1 = 4-Me$                                      | 95                                                                                                                                               | 84                 | 3.4      |  |  |  |  |  |
| $R_1 = 4$ -nitro                                  | 99*                                                                                                                                              | 85                 | 2.1      |  |  |  |  |  |

\* 2.5 mol% catalyst, E - factor = the mass of waste (mg)/the mass of product (mg) waste = by-product (mg) + leftover reactant (mg)+ solvent losses (mg)



**Fig. S1** Catalytic stability test of the  $CoBi_2O_2CO_3$  composite. Quinoxaline yields, quinoxaline selectivity and azobenzene selectivity as a function of time in a catalytic reaction of ophenylenediamine and ethylene glycol catalysed by  $CoBi_2O_2CO_3$  in first (A) and fifth (B) reaction cycle. Reaction conditions: 1 equiv. (0.25 M) ophenylenediamine, 2 mL ethylene glycol and 2.5 mol% catalyst at 110°C.



Fig. S2 XRD patterns of  $CoBi_2O_2CO_3$  composite before and after the recycling test.

#### **SECTION S2.**

# Identification of the produced azobenzene, quinoline, quinoxaline and their derivatives by NMR spectroscopy

Azobenzene <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  7.63-7.57 (m, 1H), 7.52-7.45 (m, 1H), 7.45-7.38 (m, 1H). <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  153.03, 129.94, 129.12, 122.06.

1,2-bis(4-methoxyphenyl)diazene

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.66-7.60 (m, 1H), 7.04-6.98 (m, 1H), 3.76 (s, 6H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 160.73, 147.10, 124.02, 114.57, 55.33.

1-(4-methoxyphenyl)-2-phenyldiazene

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.66-7.57 (m, 4H), 7.52-7.45 (m, 2H), 7.45-7.38 (m, 1H), 7.04 – 6.98 (m, 2H), 3.76 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 160.73, 152.32, 147.10, 129.94, 129.12, 124.02, 122.09, 114.57, 55.33.

1,2-bis(2-methoxyphenyl)diazene <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.73 (dd, 1H), 7.35 (dd, 1H), 7.13 (q, 2H), 3.85 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 153.01, 143.50, 128.22, 125.05, 122.30, 114.39, 56.15.

1-(2-methoxyphenyl)-2-phenyldiazene <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.77 (dd, 1H), 7.63-7.57 (m, 2H), 7.52-7.45 (m, 2H), 7.45-7.38 (m, 1H), 7.33 (t, 1H), 7.14 (t, 1H), 7.10 (dd, 1H), 3.85 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 152.92, 151.96, 143.22, 129.94, 129.55, 128.22, 124.08, 122.30, 122.18, 114.39, 56.15.

1,2-bis(3-nitrophenyl)diazene <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.64 (t, 1H), 8.32-8.26 (m, 1H), 7.81-7.75 (m, 1H), 7.69 (dd, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 152.16, 147.25, 129.06, 127.30, 123.00, 116.59.

1-(3-nitrophenyl)2-phenyldiazene

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.63 (t, 1H), 8.32- 8.26 (m, 1H), 7.80-7.75 (m, 1H), 7.72 - 7.65 (m, 1H), 7.63-7.57 (m, 2H), 7.52-7.45 (m, 2H), 7.45-7.38 (m, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 152.60, 152.13, 147.25, 129.94, 129.12, 129.06, 127.30, 123.00, 122.65, 116.58.

1,2-bis(4-bromophenyl)diazene <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.73-7.67 (m, 1H), 7.63-7.57 (m, 1H). <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>) δ 151.90, 132.06, 123.25, 122.26.

1-(4-bromophenyl)-2-phenyldiazene <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.73-7.67 (m, 2H), 7.63- 7.57 (m, 4H), 7.52- 7.45 (m, 2H), 7.45- 7.38 (m, 1H). <sup>13</sup>C NMR (125 MHz, DMSO-*d*<sub>6</sub>) δ 152.32, 151.90, 132.06, 129.94, 129.12, 123.25, 122.26, 122.06. 1,2-bis(4-chlorophenyl)diazene

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.79- 7.73 (m, 1H), 7.50- 7.44 (m, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 151.15, 133.73, 128.90, 122.63.

1-(4-clorophenyl)-2-phenyldiazene

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.79-7.73 (m, 1H), 7.63-7.57 (m, 1H), 7.52- 7.38 (m, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 152.32, 151.15, 133.73, 129.94, 129.12, 128.90, 122.60, 122.09.

1,2-di-p-tolyldiazene <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.61-7.55 (m, 1H), 7.28- 7.22 (m, 1H), 2.36 (s, 6H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 149.94, 138.49, 131.06, 116.25, 21.18.

1-phenyl-2-(p-tolyl)diazene <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.59 (t, 4H), 7.52-7.45 (m, 2H), 7.45-7.38 (m, 1H), 7.28-7.22 (m, 2H), 2.36 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 152.32, 149.94, 138.49, 131.06, 129.94, 129.12, 122.06, 116.25, 21.18.

4,4'-(diazene-1,2-diyl)dibenzonitrile

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 7.85-7.76 (m, 1H).

<sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 155.72, 133.54, 123.23, 118.45, 112.27.

4-(phenyldiazenyl)benzonitrile

<sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  7.85 – 7.76 (m, 4H), 7.63 – 7.57 (m, 2H), 7.52 – 7.45 (m, 2H), 7.45 – 7.38 (m, 1H). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  155.72, 152.32, 133.54, 129.94, 129.12, 123.23, 122.09, 118.45, 112.27.

Quinoline

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ:8.90 (dd, 1H), 8.36 (dd, 1H), 8.02-7.99 (d, 1H), 7.98-7.97 (d, 1H), 7.63-7.61 (t, 1H), 7.63, 7.52-7.49 (m, 2H) <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ:148.77, 148.05, 131.52, 130.14, 129.36, 128.58, 127.43, 126.15, 121.32.

8-methoxyquinoline

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.83 (dd, 2H), 8.29 (dd, 2H), 7.97-7.91 (m, 2H), 7.51 (dd, 2H), 7.32 (t, 2H), 7.18 (dd, 2H), 3.83 (s, 3H) <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 154.53, 148.72, 139.39, 130.00, 129.75, 128.73, 126.29, 122.48, 113.75, 55.69.

6-methoxyquinoline <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.73 (dd, 2H), 8.24 (d, 2H), 7.91 (d, 2H), 7.51-7.43 (m, 2H), 7.38 (t, 2H), 7.11 (dd, 2H), 3.79 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 157.52, 148.24, 143.70, 130.13, 129.96, 128.26, 122.15, 115.12, 105.51, 55.28.

7-nitroquinoline

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.87 (d, 1H), 8.61 (dd, 1H), 8.20 (dd, 1H), 8.16-8.07 (m, 2H), 7.51 (dd,1H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 151.01, 148.14, 148.05, 131.61, 128.54, 127.26, 124.39, 122.52, 120.70.

6-cloroquinoline <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.93 (dd, 1H), 8.36 (d, 1H), 8.04 (d, 1H), 7.78 (dd, 1H), 7.63 – 7.7.56 (m, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 147.83, 146.61, 131.83, 129.90, 129.72, 129.42, 126.34, 123.91, 121.68.

8-methylquinoline

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.93 (dd, 1H), 8.33 (dd, 1H), 7.80 (d, 1H), 7.63 (dd, 2H), 7.50 (t, 1H), 2.73 (s, 3H) <sup>13</sup>C NMR (00 MHz, DMSO-*d*<sub>6</sub>) δ 148.24, 147.03, 132.78, 130.63, 130.30, 129.90, 128.42, 125.74, 121.07, 17.02.

#### 6-methlquinoline

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.82 (dd, 1H), 8.23 (dt, 1H), 7.94 (d, 1H), 7.73 (t, 1H), 7.50 – 7.43 (m, 2H), 2.47 (s, 3H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 149.29, 147.07, 135.26, 130.63, 130.03, 128.52, 128.05, 127.97, 121.11, 21.55.

#### Quinoxaline

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ:8.96 (s, 2H), 8.11-8.10 (dd, 2H), 7.88-7.86 (dd, 2H). <sup>13</sup>C NMR (100MHz, DMSO-*d*<sub>6</sub>) δ:145.55, 144.04, 130.05, 127.01.

#### 6-bromoquinoxaline

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.98 (d, 1H), 8.34 (d, 1H), 8.20 (d, 1H), 8.06-8.04, (m 1H) 8.00 (dd, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 145.88, 145.33, 142.40, 141.34, 133.71, 129.10, 128.66, 122.32.

#### 6-cloroquinoxaline

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.98 (d, 1H), 8.20 (d, 1H), 7.92 (m, 2H) 6.9 (d, 1H) <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ:145.52, 144.95, 143.61, 142.30, 134.30, 130.36, 130.32, 125.51.

#### 6-nitroquinoxaline

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 9.16 (d, 1H), 8.97, (d, 1H), 8.93 (d, 1H), 8.42-8.27 (m, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ:147.50, 147.08, 146.90, 144.71, 142.41, 130.89, 123.85, 123.79.

#### quinoxaline-6-carboxylic acid

<sup>1</sup>H NMR (500 MHz, DMSO-d6) δ:9.34 (d, 1H), 8.88 (d, 1H), 8.38 (m, 1H) 8.18-8.12 (m, 2H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ:167.26, 146.12, 145.33, 145.05, 140.72, 131.47, 128.28, 127.18, 124.81.

6-methylquinoxaline

<sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 9.00 (d, 1H), 8.87 (d, 1H), 7.97 (d, 1H) 7.87 (d, 1H), 7.71 (d, 1H) 2.56. (s, 3H) <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ:144.75, 144.08, 142.32, 141.92, 138.45, 130.48, 127.68, 126.70, 21.05.

7H-dibenzo[c,g][1,2,6]triazonine <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>) δ:8.81 (s, 1H), 8.03-7.99 (m, 2H), 7.53-7.50 (m, 2H), 7.46-7.39 (m, 3H), 7.33- 7.31, (t, 1H), 5.20 (s, 1H). <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ:158.24, 152.72, 143.62, 131.56, 130.04, 130.02, 128.68, 128.49, 127.65, 126.77, 126.73, 125.29, 123.60, 61.79.

#### NOTES AND REFERENCES

- 1 C. Zhang and N. Jiao, Angew. Chem. Int. Ed., 2010, 49, 6174–6177.
- B. Dutta, S. Biswas, V. Sharma, N. O. Savage, S. P. Alpay and S. L. Suib, *Angew. Chem.*, 2016, 128, 2211–2215.
- 3 R. N. Monrad and R. Madsen, Org. Biomol. Chem., 2011, 9, 610–615.
- 4 D. Bellezza, R. J. Zaragozá, M. José Aurell, R. Ballesteros and R. Ballesteros-Garrido, *Org. Biomol. Chem.*, 2021, **19**, 677–683.
- 5 J. Li, J. Zhang, H. Yang and G. Jiang, J. Org. Chem., 2017, 82, 3284–3290.
- 6 M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier and K. Kirchner, *J. Am. Chem. Soc.*, 2016, **138**, 15543–15546.
- 7 G. Zhang, J. Wu, H. Zeng, S. Zhang, Z. Yin and S. Zheng, Org. Lett., 2017, 19, 1080–1083.
- 8 S. Elangovan, J. Sortais, M. Beller and C. Darcel, *Angew. Chem. Int. Ed.*, 2015, **54**, 14483–14486.
- 9 C. Zhang, B. Hu, D. Chen and H. Xia, *Organometallics*, 2019, **38**, 3218–3226.
- S. Parua, R. Sikari, S. Sinha, S. Das, G. Chakraborty and N. D. Paul, Org. Biomol. Chem., 2018, 16, 274–284.
- 11 S. Das, D. Maiti and S. De Sarkar, J. Org. Chem., 2018, 83, 2309–2316.
- 12 G. Chakraborty, R. Sikari, S. Das, R. Mondal, S. Sinha, S. Banerjee and N. D. Paul, *J. Org. Chem.*, 2019, **84**, 2626–2641.
- 13 S. Das, S. Sinha, D. Samanta, R. Mondal, G. Chakraborty, P. Brandaõ and N. D. Paul, J. Org. Chem., 2019, 84, 10160–10171.
- 14 S. P. Midya, V. G. Landge, M. K. Sahoo, J. Rana and E. Balaraman, *Chem. Commun.*, 2017, 54, 90–93.
- 15 S. Shee, K. Ganguli, K. Jana and S. Kundu, Chem. Commun., 2018, 54, 6883–6886.
- 16 A. Maji, S. Gupta, M. Maji and S. Kundu, J. Org. Chem., 2022, 87, 8351–8367.
- H. Vander Mierde, P. Van Der Voort, D. De Vos and F. Verpoort, *European J. Org. Chem.*, 2008, 2008, 1625–1631.
- 18 D. Wei, V. Dorcet, C. Darcel and J. B. Sortais, *ChemSusChem*, 2019, **12**, 3078–3082.
- 19 A. Maji, A. Singh, N. Singh and K. Ghosh, *ChemCatChem*, 2020, **12**, 3108–3125.
- 20 P. Daw, A. Kumar, N. A. Espinosa-Jalapa, Y. Diskin-Posner, Y. Ben-David and D. Milstein, *ACS Catal.*, 2018, **8**, 7734–7741.
- 21 K. Das, A. Mondal and D. Srimani, Chem. Commun., 2018, 54, 10582–10585.
- 22 A. Mondal, M. K. Sahoo, M. Subaramanian and E. Balaraman, J. Org. Chem., 2020, 85, 7181– 7191.
- 23 D. Panja, B. Paul, B. Balasubramaniam, R. K. Gupta and S. Kundu, *Catal. Commun.*, 2020, **137**, 105927.
- 24 S. Shee, D. Panja and S. Kundu, J. Org. Chem., 2020, 85, 2775–2784.
- 25 A. K. Bains, V. Singh and D. Adhikari, J. Org. Chem., 2020, 85, 14971–14979.
- 26 C. S. Cho and S. G. Oh, *Tetrahedron Lett.*, 2006, 47, 5633–5636.
- 27 T. Hille, T. Irrgang and R. Kempe, *Chem. Eur. J.*, 2014, **20**, 5569–5572.
- 28 M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier and K. Kirchner, Org. Lett., 2019, 21, 1116– 1120.
- 29 K. Chakrabarti, M. Maji and S. Kundu, *Green Chem.*, 2019, **21**, 1999–2004.
- 30 F. Xie, M. Zhang, H. Jiang, M. Chen, W. Lv, A. Zheng and X. Jian, *Green Chem.*, 2015, **17**, 279–284.
- 31 M. J. Climent, A. Corma, J. C. Hernández, A. B. Hungría, S. Iborra and S. Martínez-Silvestre, *J. Catal.*, 2012, **292**, 118–129.