Supporting Information

Accurate modulation of NiS cocatalyst on photoelectron transfer sites of BiVO₄ for photocatalytic H₂O₂ generation

Haiyang Shi^{a#}, Shuaikang Li^{a#}, Min Wang^a, Xinyu Yin^a, Junxian Huang^a, Wenjing Qi^a,

Xuefei Wang^a*, Ping Wang^a, Feng Chen^a, Huogen Yu^{b*}

^a School of Materials Science and Engineering, and School of Chemistry, Chemical

Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR

China

^b Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China

University of Geosciences, Wuhan, 430074, PR China

#Haiyang Shi and Shuaikang Li contributed equally.

*Corresponding authors. Tel: +86(27)87749379; Fax: +86-27-87879468;

* Corresponding authors: xuefei@whut.edu.cn and yuhuogen@cug.edu.cn

SI-1 Synthesis of BiVO₄ photocatalyst

Typically, NH₄VO₃ (0.8422 g) and Bi(NO₃)₃·5H₂O (3.4925 g) precursor were respectively dissolved into 30 mL HNO₃ solution (2 mol L⁻¹) and mixed them homogeneously. Then, ammonia solution (28%) was added into the above solution by dropwise to adjust the pH of the solution (pH = 2.0) under vigorous stirring. After stirring for 0.5 h and aging for 2 h at room temperature, the resultant yellow suspension was carried out hydrothermal treatment in a 100 mL Teflon-lined autoclave at 180 °C for 24 h. After the reaction system was naturally cooled to room temperature, yellow powder was obtained by washing and drying at 60 °C overnight.

SI-2 Characterization

The morphology and microstructure of photocatalysts were observed by the field emission scanning electronic microscope (SEM) and high-resolution transmission electron microscopy (TEM). The crystal structure was revealed by X-ray diffraction (XRD) patterns using Cu K α radiation. UV-visible diffuse reflectance spectra (UV-vis DRS) were obtained using a UV-2450 instrument (Shimadzu, Japan). The surface information was obtained using a KRATOA XSAM800 XPS system with Mg K α source radiation. The adventitious carbon C 1*s* peak was set at 284.8 eV to calibrate all the binding energies. The transient photoluminescence spectra were recorded by a FLS920 fluorescence lifetime spectrophotometer (Edinburgh instruments, UK). The element analysis of the samples was performed by inductively coupled plasma emission spectrometry (ICP-OES, Agilent 730, America). Electron spin resonance (ESR) was measured by ESR spectrometer (A300, Bruker).

SI-3 Photoelectrochemical measurements

The photoelectrochemical measurements were carried out on a standard threeelectrode configuration (CHI660E): platinum wire and Ag/AgCl are used as the counter and reference electrode, respectively. In addition, a sample-coated FTO conductor glass serves as the working electrode. The Na₂SO₄ solution (0.5 mol L⁻¹) functions as electrolyte. A 420-nm LED lamp (3 W, 20 mW cm⁻²) was employed as the light source. Meanwhile, the prepared sample (10 mg) was dispersed into a mixing solution of ethanol (2.5 mL) and D-520 Nafion (2.5 mL) with ultrasonic treatment. Then, the obtained slurry was spread on the precleaned FTO glass and then dried at 40 °C for 24 h. The photocurrent responses (*i*–*t* curves) can be obtained at a +0.5 V bias potential during the repeated ON/OFF with a set time period of 60 s. Photoelectrochemical impedance spectroscopy (EIS) was measured in the frequency range of 0.001–10⁶ Hz.

SI-4 Photocatalytic performance of photodegradation

Methyl orange (MO) aqueous solution is used as model pollutant molecule to further assess the photocatalytic performance of the synthetic NiS/BiVO₄ photocatalysts. Typically, the 80 mg of photocatalyst was dispersed into MO solution (20 mg L⁻¹) in a glass bottle. The above suspension was stirred under the dark for 1 h to obtain adsorption-desorption equilibrium. After visible-light irradiation for specific time interval, the supernatant of suspension was centrifuged to measure the concentration of MO by a UV-visible spectrophotometer. The photocatalytic degradation process of MO aqueous solution can be considered as a pseudo-first order reaction. In this case, the kinetic equation is expressed as $\ln(c_0/c) = kt$ (c_0 is the initial concentration of MO and c is the MO concentration after irradiation for t min, k is the apparent rate constant).

SI-5 The calculation of AQE

The apparent quantum efficiency (AQE) of the prepared photocatalyst is calculated via the following equation:

$$AQE(\%) = \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100\%$$
$$= \frac{\text{number of evolved } H_2O_2 \text{ molecules} \times 2}{\text{number of incident photons}} \times 100\%$$

The power of the visible light (a 420 nm-LED lamp, 3 W) was 20 mW·cm⁻². Hence,

the AQE of the NiS/BiVO₄ photocatalyst can be calculated and shown in Table S3.

Fig. S1. H₂O₂ concentration-absorbance standard curve.

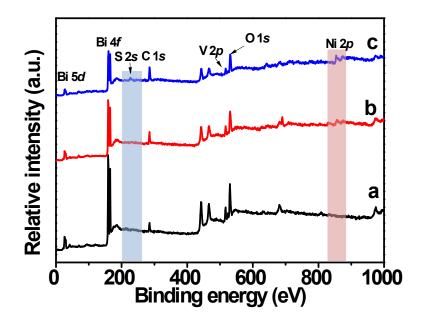


Fig. S2. Full-range XPS spectra for various samples: (a) BiVO₄, (b) 1 wt%

NiS/BiVO₄ and (c) 10 wt% NiS/BiVO₄.

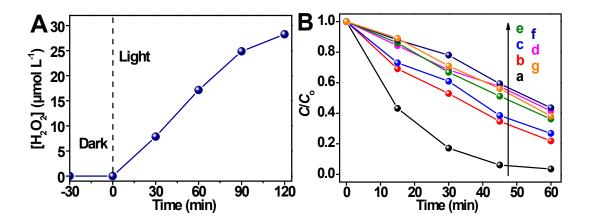


Fig. S3. (A) Photocatalytic H₂O₂-production activity of 10 wt% NiS/BiVO₄ photocatalyst in the pure water; (B) photocatalytic H₂O₂ decomposition (C₀ = 5 mmol L⁻¹): (a) BiVO₄, (b) 0.5 wt% NiS/BiVO₄, (c) 1 wt% NiS/BiVO₄, (d) 3 wt% NiS/BiVO₄, (e) 5 wt% NiS/BiVO₄, (f) 10 wt% NiS/BiVO₄ and (g) 20 wt%

NiS/BiVO₄.

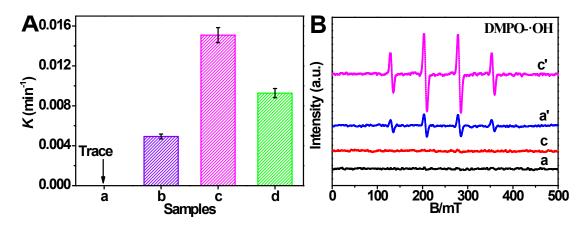


Fig. S4. (A) The rate constant (k) of MO decomposition and (B) ESR spectra of

DMPO trapped ·OH radicals of various photocatalysts: (a) BiVO₄, (b) 1 wt% NiS/BiVO₄, (c) 10 wt% NiS/BiVO₄ and (d) 20 wt% NiS/BiVO₄ (a' and c'-light).

OES results.						
Samples	Bi	V	0	Ni	S	
BiVO ₄	71.34	12.45	16.25	_	_	
1 wt% NiS/BiVO ₄	72.07	12.56	15.22	0.1	0.05	
5 wt% NiS/BiVO ₄	67.59	11.85	20.23	0.18	0.15	

Table S1 Element components (wt%) of various photocatalysts based on the ICP-

 Table S2 Element components (atom %) of various photocatalysts based on the XPS

results.							
Samples	Bi	V	0	Ni	S		
BiVO ₄	18.08	11.94	69.98	0	0		
1 wt% NiS/BiVO ₄	9.52	7.35	73.39	6.89	2.85		
10 wt% NiS/BiVO ₄	10.92	10.07	62.81	10.98	5.22		

Photocatalysts	Maximum formed H_2O_2 (µmol·L ⁻¹)	AQE (%)	H_2O_2 formation rate (µmol·L ⁻¹ ·h ⁻¹)	$k_{ m f}$ (µmol·L ⁻¹ ·min ⁻¹)	k _d (min ⁻¹)
BiVO ₄	11.25	0.055	5.63	0.2397	0.02761
0.5 wt% NiS/BiVO ₄	41.07	0.20	20.53	0.7226	0.0157
1 wt% NiS/BiVO ₄	60.71	0.30	30.36	1.3043	0.013
3 wt% NiS/BiVO ₄	207.14	1.02	103.57	2.7952	0.0095
5 wt% NiS/BiVO ₄	285.71	1.41	142.86	5.20	0.011
10 wt% NiS/BiVO ₄	975	4.8	487.5	7.5474	0.0073
20 wt% NiS/BiVO ₄	428.57	2.11	214.28	3.30	0.009

Table S3 Comparisons of H_2O_2 production for various photocatalysts.

	$ au_1$	A_1	τ_2	A ₂	Average lifetime	
Samples	(ns)	(%)	(ns)	(%)	$(\tau_a) (ns)$	χ^2
BiVO ₄	0.16	72.98	2.94	27.02	2.58	2.696
10 wt%	0.16	71.49	3.09	28.51	2.75	2.564
NiS/BiVO ₄						

Table S4 The fitted parameters obtained from decay curves of (a) $BiVO_4$ and (c) 10

The above fitted parameters are acquired via the following tri-exponential formulas:

$$\tau_{a} = (A_{1}\tau_{1}^{2} + A_{2}\tau_{2}^{2})/(A_{1}\tau_{1} + A_{2}\tau_{2})$$

where A_1 and A_2 represent the tri-exponential factors, and τ_1 , τ_2 and τ_a corresponds to the lifetime in various stages (radiation and non-radiation) and average lifetime, respectively. χ^2 is the goodness-of-fit.