Supporting Information

Efficient Electrochemical CO₂ Conversion by Cobalt-Based Metal Organic Frameworks Modified by Bimetallic Gold-Silver Nanostructures

Mohammadali Beheshti^a, Mohsen Saeidi^a, MahsaSadat Adel Rastkhiz^a, Shohreh Shahrestani^b, Ali Zarrabi^c, Jing Bai^d, Abdolreza Simchi^{a,e†}, Samineh Akbarmolaei^a

^a Department of Materials Science and Engineering, Sharif University of Technology, Tehran 1458889694, Iran

^b Centre for Corrosion Research, Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

^c Biomedical Engineering Department, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey

^d School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai200240, P. R. China

 ^e Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588, Iran

[†]Corresponding author: Tel: +98-21-6616 5226. E-mail: Simchi@sharif.edu

List of content

- S1. Materials and methods
- S2. Determination of particle size distribution of electrocatalysts
- S3. TEM and EDS analyses
- S4. XPS analysis
- S5. Electrochemical studies

S5.1. Electrochemical active surface area (ECAS)

S6. Stability studies for CO₂ reduction reaction

S1. Materials and methods

Anolyte	0.1 M H ₂ SO ₄		
Counter electrode	Platinum		
Reference electrode	Ag/AgCl		
Working electrodes	Ag@ZIF-67/GCE, Au@ZIF-67/GCE, and Au-Ag@ZIF-		
	67/GCE		
Catholyte	0.1 M K ₂ CO ₃		
Cell type	H-Shaped		
Process	Chronoamperometry (CA) @ -1 V vs. RHE		
	De-oxidation for 30 min with N_2 gas		
	Inlet CO ₂ with a rate of 20 mL/min		
	Temperature: 25 °C		

Table S1. Materials and process parameters used for CO₂RR

Figure S1. Cyclic voltammograms for electrodeposition of gold and silver nanoparticles on ZIF-67/GCE at a scan rate of 200 mV s⁻¹ for 15 cycles.

S2. Determination of the particle size distribution of electrocatalysts

Figure S2. Particle size distribution of (a) Ag@ZIF-67, (b) Au@ZIF-67, and (c) Au-Ag@ZIF-67 electrocatalysts determined by FE-SEM. (d) Particle size distribution of Au-Ag@ZIF-67 determined by HRTEM.

S3. TEM and EDS analyses

Figure S3. EDS spectra of (a) ZIF-67, (b) Ag@ZIF-67, (c) Au@ZIF-67 and (d) Au-Ag@ZIF-67.

Figure S4. TEM image of Au-Ag@ZIF-67.

Figure S5. EDS mapping of (a) ZIF-67 and (b) Au-Ag@ZIF-67.

1 µn

1 µm

1 µm

S.4 XPS analysis

Figure S6. XPS spectra of (a)ZIF-67/GCE and Au-Ag@ ZIF-67/GCE, (b) Co 2p, (c) Au 4f and (d) Ag 3d.

S5. Electrochemical studies

Substrate	$R_{s}(\Omega)$	$R_{ct}(\Omega)$
GCE	32.4	193.3
ZIF-67/GCE	41.9	266.1
Ag/GCE	32.8	143.7
Au/GCE	38.6	16.4
Au-Ag/GCE	33.2	35.1
Ag@ZIF-67/GCE	22.4	189.3
Au@ZIF-67/GCE	22.9	1.5
Au-Ag@ZIF-67/GCE	18.6	0.14

Table S2. Values of R_s and R_{ct} derived from ESI data fitting by an equivalent circuit

Figure S7. Amperometric studies as a function of time at the potentials of -0.6, -0.8, and -1 V (vs. RHE) showing the stability of the Au-Ag@ZIF-67 catalyst for CO_2RR

Figure S8. Time-dependent Faradaic efficiencies of gas products on the Au-Ag@ZIF-67 catalyst at -1 V (vs. RHE) for CO₂RR

S5.1. Electrochemical active surface area (ECSA)

CV at multiple scan rates was performed in a solution of 5 mM $Fe(CN)_6^{3-/4-}$ containing 0.1 M KCl to determine (ECSA). The Randles-Sevcik plot derived from CV curves is shown in Figure S5, and the value of ECSA was calculated by¹:

$$I_p = (2.69 \times 10^5) n^{\frac{3}{2}} A D^{\frac{1}{2}} v^{\frac{1}{2}} C_0$$
(S1)

where I_p is the peak current (A), n is the number of the electrons participating in the reaction, A is the surface area of the electrode (cm²), D is the diffusion coefficient of the electroactive species (cm² s⁻¹), ν is the scan reate (V s⁻¹), and C_0 is the concentration of the electroactive species in the bulk solution. Based on the slope of I_p vs. $\nu^{1/2}$, the ECSA was calculated for each electrode and shown in Table S3.

Substrate	Slope	Electroactive area (cm ²)
GCE	0.19	0.054
ZIF-67/GCE	0.17	0.04
Ag/GCE	0.28	0.08
Au/GCE	0.3	0.083
Au-Ag/GCE	0.26	0.074
Ag@ZIF-67/GCE	0.46	0.13
Au@ZIF-67/GCE	0.54	0.15
Au-Ag@ZIF-67/GCE	0.63	0.18

TADIC 55. The calculated values of LCDF
--

Substrata	Overpotential at -10	Current at -1 V (vs. RHE)		
Substrate	mA (vs. RHE)	(mA)		
GCE	-	-1.54		
ZIF-67/GCE	-	-0.7		
Ag@ZIF-67/GCE	-0.63	-12.29		
Au@ZIF-67/GCE	-0.58	-12.69		
Au-Ag@ZIF-67/GCE	-0.54	-16.4		

	Table S4.	The extracted	data from	LSV curves	of electroc	chemical	CO ₂ RR
--	-----------	---------------	-----------	------------	-------------	----------	--------------------

S6. Stability studies for CO₂ reduction reaction

Figure S9. BJH pore size distribution.

Table S5. N_2 adsorption/desorption data for the synthesized samples

Sampla	S _{BET}	Sext	S _{micro}	V _{micro}	V _{total}	Mean pore
Sample	$(m^2 g^{-1})$	(m ² g ⁻¹)	(m ² g ⁻¹)	(cm ³ g ⁻¹)	(cm ³ g ⁻¹)	width (nm)
ZIF-67 before CO ₂	1705.1	17.8	1755.7	0.613	0.667	7.2
reduction						
ZIF-67 after CO ₂	196.4	4.1	204.8	0.092	0.104	10.9
reduction						
Au-Ag@ZIF-67	1072.5	55.6	1016.9	0.510	0.560	5.7
before CO ₂ reduction						
Au-Ag@ZIF-67 after	985.3	43.2	940.1	0.49	0.546	6.2
CO ₂ reduction						

References

A. J. Bard, L. R. Faulkner and H. S. White, in *Electrochemical Methods:* 1 Fundamentals and Applications, John Wiley & Sons, Ltd, New Jersey, 3rd edn., 2022, p. 316.