Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information for Publication

Theoretical assessments of Pd-PdO phase transformation and its impacts on H₂O₂ synthesis and decomposition pathways

Manasi Vyas, Fernando Fajardo-Rojas, Diego A Gómez-Gualdrón, Stephanie Kwon* Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States

* Corresponding author: <u>kwon@mines.edu</u>

S1. Molecular dynamic (MD) simulations for Pd₁₃, Pd₅₅ and PdO clusters.

Figure S1 describes the methodology used for finding low energy cluster configurations for Pd₁₃, Pd₅₅, and Pd₁₃O_v clusters. This technique uses both Density Functional Theory (DFT) and reactive force-field Molecular Dynamics (ReaxFF MD) in an iterative DFT/MD/DFT process. For Pd clusters, following lattice parameter optimization for bulk Pd, clusters were constructed from the bulk based on a set number of Pd atoms (i.e. 13 and 55 atoms for Pd₁₃ and Pd₅₅, respectively) as outlined in previous studies.¹⁻⁴ These clusters were optimized using DFT and were then used as initial configurations for ReaxFF MD annealing runs. For each run, ReaxFF took the initial DFT-derived cluster configurations and relaxed all atoms under the NVT ensemble using the Nose-Hoover thermostat. Each cluster was subject to two heating and cooling stages. The heating stages involved an increase in temperature to 400 K and a further increase to 1200 K with equilibrium stages between each step. The cooling stages followed the same methodology, with a decrease in temperature from 1200 K to 400 K and 400 K to 200 K. This procedure allowed the system to screen through different cluster configurations during the time frame of the simulation. Alternatively, the Berendsen thermostat was used with a 25 fs damping parameter and the PdxOy cluster was allowed to sample configurations during a single 0.750 ns stage of equilibration at 700 K. In all cases, the lowest energy cluster configurations found through ReaxFF were then re-optimized using DFT and compared with the initial DFT-derived cluster configuration guesses. Finally, the lowest energy clusters found by comparing the values from both DFT and ReaxFF were used for further H₂O₂ synthesis/decomposition DFT calculations.

Two methodologies were used to construct bulk $Pd_{13}O_y$ clusters. In the first method, we sequentially added O-atoms on the optimized Pd_{13} cluster and optimized each cluster via iterative DFT/MD/DFT simulations at each coverage (using the annealing method described above). In the second method, $Pd_{13}O_y$ clusters (y = 6-16) were cleaved from bulk PdO (after lattice optimization), which was further optimized via constant temperature DFT-MD-DFT iterations (at 700 K). These clusters were compared with those found from method 1, and the lowest energy $Pd_{13}O_y$ cluster was further used for H_2O_2 synthesis/decomposition calculations.

Figure S1. Iterative DFT/MD/DFT methodology used to find the lowest energy configurations of Pd and PdO clusters.

Figure S2. a) Birch-Murnaghan equation of state fit to the minima of the ReaxFF bulk Pd curve. b) ReaxFF expansion-compression curve for bulk Pd lattice parameter optimization. c) Density fitting for bulk Pd using ReaxFF derived lattice parameter.

Figure S3. a) Birch-Murnaghan equation of state fit to the minima of the ReaxFF bulk PdO curve. b,c) ReaxFF expansion-compression curve for bulk PdO lattice parameter optimization. d,e) Density fitting for bulk PdO using ReaxFF derived lattice parameters.

Figure S4. A DFT/MD/DFT run with ReaxFF annealing calculation for Pd_{13} , where temperature is the black curve and potential energy is the blue curve.

Figure S5. A DFT/MD/DFT run with ReaxFF annealing calculation for Pd_{55} , where temperature is the black curve and potential energy is the blue curve.

Figure S6. Comparison of DFT-derived electronic energies for Pd_{13} clusters with O* coverages ranging from 1-20 O* atoms and different configurations for each surface coverage. These clusters are used for further MD-DFT optimization (method 1) in PdO cluster construction, as outlined in S1.1.

Figure S7. An example of a DFT/MD/DFT run with ReaxFF annealing calculation for $Pd_{13}O_8$, where temperature is the black curve and potential energy is the blue curve. This demonstrates method 1 for PdO cluster construction, as described in Fig. S1.

Figure S8. Potential energy curves for $Pd_{13}O_y$ clusters constructed using constant temperature ReaxFF simulations (method 2, Fig. S1). These clusters were compared with those found using method 1 and the lower energy cluster was used for further DFT calculations.

S2. Ab-initio thermodynamic calculations

(a) Other contributions to the Helmholtz free energy

Within the grand canonical ensemble, the number of particles fluctuates to minimize the grand potential (Φ) at a given set of reaction conditions (oxygen and Pd chemical potentials) as shown below.

$$\Phi_{N_{Pd}N_{O}}(T,\mu_{Pd*},\mu_{O*}) = F_{N_{Pd}N_{O}}(T) - N_{Pd}\mu_{Pd*} - N_{O}\mu_{O*}$$
(S1)

Here, ${}^{\Phi_{N_{pd}N_{0}}}$ is the grand potential of the system with N_i numbers of Pd and O atoms and ${}^{\mu_{i*}}$ is the chemical potential of bound species i. ${}^{F_{N_{pd}N_{0}}}$ represents the Helmholtz free energy, which includes the internal energy of the Pd, PdO/Pd, and PdO structures (approximated as its electronic energy derived from DFT methods, ${}^{E_{N_{pd}N_{0}}}$), the vibrational contributions to the Helmholtz free energy (${}^{F_{N_{pd}N_{0}}}(T)$), and the configurational entropic contribution to the Helmholtz free energy (${}^{S^{conf}}$) at a given temperature T:

$$F_{N_{Pd}N_{O}}(T) = E_{N_{Pd}N_{O}}^{DFT} + F_{N_{Pd}N_{O}}^{vib}(T) - TS^{conf}$$
(S2)

The effect of vibrational contributions to the Helmholtz free energy $\binom{F_{N_{pd}N_{0}}(T)}{P_{pd}N_{0}}$ was estimated based on the method proposed by Reuter et al.^{5–7} To avoid using computationally intensive phonon density of states (DOS) calculations, the Einstein model was employed. This model considers one characteristic frequency, w, for each atom type (i.e. chemisorbed atom, gas phase atoms, and atoms in the bulk). Thus,

$$F_{N_{Pd}N_{O}}^{vib}(T) = \frac{hw}{2} + kTln\left(1 - e^{\frac{-hw}{kT}}\right)$$
(S3)

where h is Planck's constant, k is the Boltzmann constant, and T is the temperature. Since we are only considering the relative grand potential between the clean and oxidized surface, allowing this frequency to change significantly for surface O* atoms compared to those in the solid bulk or in the gas phase provides an order of magnitude estimate of the vibrational contribution. Thus, the relative vibrational frequency between chemisorbed oxygen on the surface and gas phase oxygen can be calculated as:

$$\Delta F_{N_{Pd}N_{O}}^{vib} = -\frac{1}{A} \left(F^{vib}(T,w) - \frac{1}{2} F^{vib}() \right)$$
(S4)

Here, *w* is the characteristic frequency of the vertical stretch of the O/Pd bond (80 meV) and $\langle w \rangle$ is the characteristic frequency of oxygen in the gas phase (196 meV). Considering the potential errors accumulated in calculating the characteristic surface frequency, this frequency was also varied +/- 50% of the original value. As seen in Fig. S9a, even for extensive variations of the characteristic vibrational modes

(shown as dashed lines), the resulting vibrational contribution stays within +/- 10 meV/ $Å^2$ for the temperature range considered.

Configurational entropic effects were calculated based on the method proposed by Reuter et al. If a system with N number of surface sites has a small number of n defects or adsorbate sites ($n \ll N$), the configurational entropy is given by

$$S^{conf} = k ln \frac{(N+n)!}{N!n!}$$
(S5)

If A_{site} is the surface area per site, the configurational entropy per surface area is

$$\frac{TS^{conf}}{NA_{site}} = \frac{kT}{NA_{site}} ln \frac{(N+n)!}{N!n!}$$
(S6)

Then, if N and n are much greater than 1, then the Stirling formula can be applied:

$$\frac{TS^{conf}}{NA_{site}} = \frac{kT}{A_{site}} \left[\ln\left(1 + \frac{n}{N}\right) + \left(\frac{n}{N}\right) \ln\left(1 + \frac{n}{N}\right) \right]$$
(S7)

The expression in the brackets varies between 0 for n/N = 0 and 0.34 for n/N = 0.1 (10 %). Therefore, the configurational entropy can be approximated as

$$\frac{TS^{conf}}{NA_{site}} = 0.34 \frac{kT}{A_{site}}$$
(S8)

Assuming a typical area per surface site of 10 Å² for transition metal surfaces, the configurational entropic contribution was found to be less than 3 meV/Å² for a temperature range of 100 to 1000 K (Fig. S9b).

Figure S9: The contributions of (a) vibrational free energies, where the characteristic vibrational mode was varied \pm 50% of the original value (shown as dashed lines), and (b) configurational free energies to the total free energy at a temperature range of 100-1000 K.

$P_0 = 100000 \text{ Pa}$	1/2O ₂	H ₂ O	H_2O_2	H_2
T [K]	$\mu_i^o[eV]$	μ_i^o [eV]	μ_i^o [eV]	μ_i^o [eV]
100	-0.075	-0.124	-0.159	-0.036
200	-0.170	-0.295	-0.362	-0.094
300	-0.274	-0.485	-0.612	-0.159
400	-0.383	-0.686	-0.861	-0.229
500	-0.495	-0.896	-1.12	-0.303
600	-0.611	-1.11	-1.39	-0.380
700	-0.730	-1.34	-1.68	-0.460
800	-0.851	-1.57	-1.97	-0.541
900	-0.974	-1.8	-2.27	-0.625
1000	-1.10	-2.04	-2.57	-0.710

Table S1: Reference chemical potential for gas phase species ($1/2 O_2$, H_2O , H_2O_2 , and H_2), calculated using JANAF thermochemical tables.

Figure S10. (a) Temperature dependence of the oxygen chemical potential $({}^{\mu_0}{}^{\circ}_*)$ at p=1 bar calculated using first principles. (b) Comparison between ${}^{\mu_0}{}^{\circ}_*$ calculated using either JANAF thermochemical tables or first principles.⁸

and (b) Pd_{13} as a function of the chemical potential of $O^* (\mu_{O^*}^o)$ at T = 300 K. The stable phases are represented by blocks of color, where the stable phase occurs at the intersection of each line at which the relative grand potential becomes more negative.

Figure S12. a) Surface phase diagram of Pd(111) in terms of the chemical potential of $O^*(\mu_{0^*})$ at T = 300 K. The corresponding T, p diagrams denoting the stable regions of each structure over a range of temperatures (200-1000K) and H₂O₂/H₂O and O₂ pressures (bar) for b) Pd(111), c) Pd(100), and d) Pd₁₃.

(b) Phase diagrams in O₂/H₂ environments

The surface phase diagram for Pd(111) in O_2/H_2 environments is derived based on ab initio thermodynamics. The grand potential (Φ) within the grand canonical ensemble depends on the chemical potentials of Pd*, O*, and H* species:

$$\Phi_{N_{Pd}N_{O}N_{H}}(T,\mu_{Pd*},\mu_{O*},\mu_{H*}) = F_{N_{Pd}N_{O}N_{H}}(T) - N_{Pd}\mu_{Pd*} - N_{O}\mu_{O*} - N_{O}\mu_{H*}$$
(S9)

In thermodynamic equilibrium, the chemical potentials of O^* and H^* in the solid are set by the chemical potentials of gas phase O_2 and H_2 :

$$\mu_{0*} = \frac{1}{2}\mu_{0_2} \tag{S10}$$

$$\mu_{H*} = \frac{1}{2}\mu_{H_2} \tag{S11}$$

The chemical potential of a gas-phase species *i*, $\mu_{i'}$ can be calculated as:

$$\mu_i = \mu_i^o + k_B T ln \left(\frac{p_i}{p^0}\right) \tag{S12}$$

where p_i is the partial pressure and μ_i^o is reference chemical potential (calculated with the standard enthalpy and entropy values listed in the JANAF thermochemical tables; Table S1).

The lower limit of μ_{0*} is set under oxidant-poor conditions at which the bulk oxide decomposes into gas-phase oxidant and metallic Pd:

$$\mu_{Pd0}^{bulk} < \mu_{Pd}^{bulk} + \frac{1}{2}\mu_{0_2} \tag{S13}$$

At T = 0 K, the Gibbs free energy of formation for PdO (${}^{\Delta G_{f,PdO}}$) is given by $\mu_{PdO}^{bulk} - \mu_{Pd}^{bulk} - \frac{1}{2}\mu_{O_2}$, which can be approximated with DFT-derived electronic energies.

$$\Delta G_{f,Pd0} = E_{Pd0}^{DFT} - E_{Pd}^{DFT} - \frac{1}{2} (E_{0_2}^{DFT} + E_{0_2}^{ZPVE}) = -0.87 \ eV \tag{S14}$$

DFT-derived value of $\Delta G_{f, PdO}$ (-0.87 eV) agrees relatively well with the experimental value for $\Delta G_{f, PdO}$ of -0.97 eV and thus has been used as the boundary conditions. Within O₂ and H₂ mixtures, PdO is reduced into Pd and H₂O at higher H₂/O₂ ratios, which gives a second boundary condition:

$$\mu_{Pd}^{bulk} + \mu_{H_20} < \mu_{Pd0}^{bulk} + \mu_{H_2} \tag{S14}$$

The stability criterion for PdO in O_2/H_2 environments is then given by combining Equations S12, S13 and S14:

$$\Delta \mu_{H_2} - \frac{1}{2} \mu_{O_2} < -2 \Delta G_{f,PdO} + \Delta G_{f,H_2O} \quad , \tag{S14}$$

where ${}^{\Delta G_{f,H_2 0}}$, the Gibbs free energy of formation for H₂O from H₂ and O₂, was calculated to be -2.55 eV from DFT-derived electronic energies. The surface phase diagrams for Pd(111) in O₂/H₂ environments (shown in Figure S13) are derived by calculating the change in the grand potential ($\Delta \Phi$) over a range of ${}^{\mu_0}_{2}$ and ${}^{\mu_H}_{2}$ for different Pd-O systems relative to clean models and identifying the configurations that minimize $\Delta \Phi$ using Eq. S9. The pressure bars are set by holding temperature constant and using Eq. S12 to calculate the pressure at specific O₂ and H₂ chemical potentials.

Figure S13. Surface phase diagram of Pd(111) as a function of chemical potentials of H₂(g) and O₂(g) at (a) 300 K and (b) 450 K. The black boxes represent typical operating conditions during (a) H₂O₂ synthesis (P_{H2}, P_{O2} = 5-100 bar, T = 275-315 K)⁹ and (b) C₃H₈ oxidation reaction with H₂ and O₂ co-feed (P_{H2}, P_{O2} = 10⁻³-1 bar, T = 450 K)¹⁰

S3. DFT assessments of adsorbate binding on all surfaces and clusters

Figure S14. Possible binding sites in Pd(111), Pd(100), Pd₅₅, Pd₁₃, Pd₅O₄/Pd(111), PdO(100), PdO(101), Pd₁₃O₈, and Pd₁₃O₁₈ models and their nomenclatures.

Table S2. DFT-derived adsorption energies (kJ mol⁻¹) of adsorbed species on the Pd(100) surface. Adsorption energies calculated from this work (PBE-D2) were compared to those in the literature (PW91).

	Pd(100)	PBE-D2	PW91 [ref ¹¹]
Species	Binding Site	(kJ/mol)	(kJ/mol)
O*	Hollow	-466	-376
O*	Bridge	-430	
H*	Hollow	-370	-264
H*	Bridge	-367	
OH*	Bridge-tilted	-294	-210
OH*	Hollow	-280	
OOH*	Bent-bridge	-186	-123
$H_2O_2^*$	Тор	-79	-35
H ₂ O*	Тор	-61	-29
O ₂ *	Hollow	-172	-123

*all adsorption energies are electronic energies without any corrections and referenced to the corresponding molecules in the gas-phase (e.g., O(g), H(g), OH(g), OOH(g), H₂O(g), H₂O₂(g)). Relevant adsorption configurations are shown in Figure S15.

Figure S15. DFT-derived adsorption configurations of adsorbed species on the Pd(100) surface.

Table S3. DFT-derived adsorption energies (kJ mol⁻¹) of adsorbed species on the Pd(111) surface. Adsorption energies calculated from this work (PBE-D2) were compared to those in the literature (PW91).

	Pd(111)	PBE-D2	PW91[ref ¹¹]
Species	Binding Site	(kJ/mol)	(kJ/mol)
0*	Hollow - fcc	-464	-351
0*	Hollow - hcp	-430	
0*	Тор	-317	
H*	Hollow - fcc	-381	
H*	Hollow - hcp	-361	-260
H*	Bridge	-367	
H*	Тор	-330	
OH*	Bridge-tilted	-260	-196
OH*	Hollow - fcc	-253	
OH*	Hollow - hcp	-238	
OOH*	Bent-top	-126	-91
H ₂ O ₂ *	Тор	-67	-31
H ₂ O*	Тор	-51	-21
O ₂ *	Top-bridge	-99	-48

*all adsorption energies are electronic energies without any corrections and referenced to the corresponding molecule in the gas-phase (e.g., O(g), H(g), OH(g), OOH(g), $H_2O(g)$, $H_2O_2(g)$) Relevant adsorption configurations are shown in Figure S16.

Figure S16. DFT-derived adsorption configurations of adsorbed species on Pd(111).

	Pd ₁₃		
Species	Binding Site	(kJ/mol)	
O*	Hollow	-469	
O*	Bridge	-448	
O*	Тор	-370	
H*	Hollow	-419	
H*	Bridge	-413	
OH*	Bridge-tilted	-326	
OH*	Hollow	-314	
OH*	Top-tilted	-299	
OOH*	Bent-top	-212	
H ₂ O ₂ *	Тор	-99	
H ₂ O*	Тор	-86	
O ₂ *	Top-bridge	-190	

Table S4. DFT-derived adsorption energies (kJ mol⁻¹) of adsorbed species on the Pd₁₃ cluster.

*all adsorption energies are electronic energies without any corrections and referenced to the corresponding molecule in the gas-phase (e.g., O(g), H(g), OH(g), OOH(g), H₂O(g), H₂O₂(g)) Relevant adsorption configurations are shown in Figure S17.

Figure S17. DFT-derived adsorption configurations of adsorbed species on the Pd₁₃ cluster.

	Pd ₅₅		
Species	Binding Site	(kJ/mol)	
O*	Hollow_a	-493	
O*	Hollow_b	-483	
O*	Тор	-384	
H*	Hollow_b	-388	
H*	Hollow_a	-386	
H*	Bridge	-378	
H*	Тор	-324	
H*	Top_1	-337	
OH*	Bridge_1	-294	
OH*	Bridge_2	-276	
OH*	Hollow_b	-285	
OH*	Hollow_a	-289	
OOH*	Тор	-192	
H ₂ O ₂ *	Top_1	-71	
$H_2O_2^*$	Top_2	-69	
H ₂ O*	Top_1	-59	
H ₂ O*	Top_2	-55	
O ₂ *	Тор	-156	

Table S5. DFT-derived adsorption energies (kJ mol⁻¹) of adsorbed species on the on the Pd_{55} cluster.

*all adsorption energies are electronic energies without any corrections and referenced to the corresponding molecule in the gas-phase (e.g., O(g), H(g), OH(g), OOH(g), H₂O(g), H₂O₂(g)) Relevant adsorption configurations are shown in Figure S18.

Figure S18. DFT-derived adsorption configurations of adsorbed species on the Pd_{55} cluster.

	Pd ₅ O ₄ /Pd(111)		
Species	Binding Site	(kJ/mol)	
0*	Bridge_a	-314	
O*	Bridge_b	-295	
O*	Hollow	-312	
H*	$Top - O_{3c}$	-364	
OH*	Bridge_a	-223	
OH*	Bridge_b	-213	
OH*	Bridge_b_1	-209	
OOH*	Bidentate	-124	
OOH*	Bidentate_1	-110	
OOH*	Bridge_a	-132	
OOH*	Тор	-104	
OOH*	Bidentate_2	-123	
OOH*	Bridge_b	-118	
OOH*	Bridge_a_2	-122	
$H_2O_2^*$	Top_1	-68	
$H_2O_2^*$	Top_2	-48	
H_2O^*	Top_1	-38	
H_2O^*	Top_2	-39	
O ₂ *	Bridge_a	-60	
O ₂ *	Bidentate	-52	
O ₂ *	Bidentate_1	-30	
O ₂ *	Тор	-25	
O ₂ *	Hollow	-43	

Table S6. DFT-derived adsorption energies (kJ mol⁻¹) of adsorbed species on the on Pd₅O₄/Pd(111).

*all adsorption energies are electronic energies without any corrections and referenced to the corresponding molecule in the gas-phase (e.g., O(g), H(g), OH(g), OOH(g), $H_2O(g)$, $H_2O_2(g)$) Relevant adsorption configurations are shown in Figure S19.

Figure S19: DFT-derived binding configurations of adsorbed species on Pd₅O₄/Pd(111).

	PdO(101)-Pd(100)		
Species	Binding Site	(kJ/mol)	
0*	Bridge_a	-339	
O*	Bridge_b	-334	
O*	Тор	-239	
H*	$Top_{3c}1$	-383	
H*	$Top_{3c}2$	-376	
H*	Top_{4c}	-307	
OH*	Bridge_b	-255	
OH*	Bridge_a	-256	
OOH*	Bidentate_1	-100	
OOH*	Bidentate_2	-108	
OOH*	Bidentate_3	-124	
OOH*	Bidentate 4	-126	
OOH*	Тор	-124	
OOH*	Bridge	-155	
H ₂ O ₂ *	Top 1	-67	
H ₂ O ₂ *	Top 2	-62	
H ₂ O*	Top 1	-42	
H ₂ O*	Top 2	-35	
H ₂ O*	Top 3	-33	
H ₂ O*	Top_4	-36	
O ₂ *	Top_1	-25	
O ₂ *	Top_2	-27	
O ₂ *	Bidentate_1	-42	
O ₂ *	Bidentate_2	-39	
O_2^*	Bridge	-25	

Table S7. DFT-derived adsorption energies (kJ mol⁻¹) of adsorbed species on the on PdO(101)/Pd(100).

*all adsorption energies are electronic energies without any corrections and referenced to the corresponding molecule in the gas-phase (e.g., O(g), H(g), OH(g), OOH(g), H₂O(g), H₂O₂(g)) Relevant adsorption configurations are shown in Figure S20.

Figure S20. DFT-derived binding configurations of adsorbed species on PdO(101)/Pd(100).

	Pd ₁₃ O ₈		
Species	Binding Site	(kJ/mol)	
O*	Bridge	-285	
O*	Тор	-251	
O*	4-fold hollow	-286	
H*	Top - O	-405	
H*	Top – Pd	-304	
H*	Hollow	-343	
OH*	Top - tilted	-196	
OH*	Bridge - tilted	-205	
OH*	Hollow	-169	
OOH*	Top -bridge	-103	
OOH*	Тор	-110	
OOH*	Top -113		
OOH*	Bridge	-102	
H ₂ O ₂ *	Top_1	-68	
H ₂ O ₂ *	Top_2	-49	
H ₂ O*	Тор	-34	
H ₂ O*	Тор	-39	
O ₂ *	Hollow	-32	
O ₂ *	Bridge	-54	

Table S8. DFT-derived adsorption energies (kJ mol⁻¹) of adsorbed species on the Pd₁₃O₈ cluster.

*all adsorption energies are electronic energies without any corrections and referenced to the corresponding molecule in the gas-phase (e.g., O(g), H(g), OH(g), OOH(g), H₂O(g), H₂O₂(g)) Relevant adsorption configurations are shown in Figure S21.

Figure S21. DFT-derived configurations of adsorbed species on the Pd₁₃O₈ cluster.

	PdO(101)		
Species	Binding Site	(kJ/mol)	
O*	Тор	-328	
O*	Bridge	-375	
H*	Top - O	-395	
H*	Top - Pd	-27	
OH*	Top - tilted	-284	
OH*	Top - tilted	-272	
OH*	Bridge	-304	
OOH*	Bridge - tilted	-239	
OOH*	Тор	-194	
OOH*	Bidentate	-219	
H ₂ O ₂ *	Тор	-118	
H ₂ O*	Тор	-94	
O ₂ *	Bidentate	-142	
O ₂ *	Bridge	-64	
O ₂ *	Тор	-85	

Table S9. DFT-derived adsorption energies (kJ mol⁻¹) of adsorbed species on the on the PdO(101) surface.

*all adsorption energies are electronic energies without any corrections and referenced to the corresponding molecule in the gas-phase (e.g., O(g), H(g), OH(g), OOH(g), H₂O(g), H₂O₂(g)) Relevant adsorption configurations are shown in Figure S22.

Figure S22. DFT-derived binding configurations of adsorbed species on the PdO(101) surface.

	PdO(100)		
Species	Binding Site	(kJ/mol)	
0*	Тор	-170	
H*	Top - O	-448	
H*	Top - Pd	26	
OH*	Top - tilted	-154	
OOH*	Тор	-101	
OOH*	Top_1	-92	
H_2O_2 *	Top_1	-64	
H ₂ O ₂ *	Top_2	-70	
H ₂ O*	Тор	-33	
O ₂ *	Top_1	-24	
O ₂ *	Top_2	-20	

Table S10. DFT-derived adsorption energies (kJ mol⁻¹) of adsorbed species on the PdO(100) surface.

*all adsorption energies are electronic energies without any corrections and referenced to the corresponding molecule in the gas-phase (e.g., O(g), H(g), OH(g), OOH(g), H₂O(g), H₂O₂(g)) Relevant adsorption configurations are shown in Figure S23.

Figure S23. DFT-derived binding configurations of adsorbed species on the PdO(100) surface.

	Pd ₁₃ O ₁₈	PBE-D2
Species	Binding Site	BE (kJ/mol)
O*	Тор	-207
H*	$Top - O_{2c}$	-503
H*	$Top - O_{3c}$	-466
OH*	Top - tilted	-160
OH*	Top – tilted_1	-167
OOH*	Тор	-89
H_2O_2 *	Top_1	-65
H_2O_2 *	Top_2	-56
H_2O_2 *	Top_3	-57
$H_2O_2^*$	Top_4	-54
H ₂ O*	Тор	-38
O ₂ *	Top_1	-20
O ₂ *	Top_2	-22
O ₂ *	Top_3	-23

Table S11. DFT-derived adsorption energies (kJ mol⁻¹) of adsorbed species on the Pd₁₃O_{18,} cluster.

*all adsorption energies are electronic energies without any corrections and referenced to the corresponding molecule in the gas-phase (e.g., O(g), H(g), OH(g), OOH(g), H₂O(g), H₂O₂(g)) Relevant adsorption configurations are shown in Figure S24.

Figure S24. DFT-derived binding configurations of adsorbed species on the Pd₁₃O₁₈ cluster.

S4. H_2O_2 Synthesis and Decomposition Reaction Energy Pathways for Pd and PdO/Pd and PdO surfaces

Figure S25. DFT-derived (a) Gibbs free energies, (b) electronic energies, (c) structures of intermediates and TS structures involved in the possible H_2O_2 synthesis pathways on Pd(111) (in Scheme 1). All energies are reference to the energies of $O_2(g)$ and $H_2(g)$ and clean Pd(111) surface. Low vibrational modes (< 100 cm⁻¹) are either replaced by a 70% contribution of the average of translational and rotational entropy of the molecule in the gas phase (red dashed lines in Panel (a)) or deleted in (black lines in Panel (a)) in calculating entropies of weakly bound intermediates and TS.

Figure S26. DFT-derived (a) Gibbs free energies, (b) electronic energies, (c) structures of intermediates and TS structures involved in the possible H_2O_2 synthesis pathways on Pd(100) (in Scheme 1). All energies are reference to the energies of $O_2(g)$ and $H_2(g)$ and clean Pd(100) surface.

Figure S27. DFT-derived (a) Gibbs free energies, (b) electronic energies, (c) structures of intermediates and TS structures involved in the possible H_2O_2 synthesis pathways (in Scheme 1) on the Pd_{13} cluster. All energies are reference to the energies of $O_2(g)$ and $H_2(g)$ and the clean Pd_{13} cluster.

Figure S28. DFT-derived (a) Gibbs free energies, (b) electronic energies, (c) structures of intermediates and TS structures involved in the possible H_2O_2 synthesis pathways (in Scheme 1) on the Pd_{55} cluster. All energies are reference to the energies of $O_2(g)$ and $H_2(g)$ and the clean Pd_{55} cluster.

Figure S29. Electronic energies of intermediates and TS structures involved in the possible H_2O_2 synthesis pathways (in Scheme 1) on $Pd_5O_4/Pd(111)$. All energies are referenced to the energies of $O_2(g)$ and $H_2(g)$ and clean $Pd_5O_4/Pd(111)$ surface. The corresponding images on the bottom are shown for each stable species and TSs in the reaction pathway.

Figure S30. DFT-derived (a) Gibbs free energies, (b) electronic energies, (c) structures of intermediates and TS structures involved in the possible H_2O_2 synthesis pathways (in Scheme 1) on PdO(101)/Pd(100). All energies are reference to the energies of $O_2(g)$ and $H_2(g)$ and the clean PdO(101)/Pd(100) surface.

Figure S31. DFT-derived (a) Gibbs free energies, (b) electronic energies, (c) structures of intermediates and TS structures involved in the possible H_2O_2 synthesis pathways (in Scheme 1) on the $Pd_{13}O_8$ cluster. All energies are reference to the energies of $O_2(g)$ and $H_2(g)$ and the clean $Pd_{13}O_8$ cluster.

Figure S32. Electronic energies of intermediates and TS structures involved in the possible H_2O_2 synthesis pathways (in Scheme 1) on (a) PdO(100) and (b) PdO(101). All energies are referenced to the energies of $O_2(g)$ and $H_2(g)$ and the clean surface.

Figure S33. DFT-derived (a) Gibbs free energies, (b) electronic energies, (c) structures of intermediates and TS structures involved in the possible H_2O_2 synthesis pathways (in Scheme 1) on the $Pd_{13}O_{18}$ cluster. All energies are reference to the energies of $O_2(g)$ and $H_2(g)$ and the clean $Pd_{13}O_{18}$ cluster.

Figure S34. Charge distribution between O-atoms in surface-bound O_2^* on Pd, PdO/Pd, and PdO models, obtained via Bader charge analysis. The O-O distance between O atoms in O_2^* (d_{O-O}; nm) is shown.

S5. O₂ Dissociation on clean Pd surfaces

Figure S35: Electronic energies of intermediates and TS structures involved in O_2 dissociation on Pd(111), Pd(100), and Pd₁₃ models. The corresponding images on the right are shown for each stable species and TS in the reaction pathway.

S6. H₂ Dissociation on Pd, PdO/Pd, and PdO surfaces

		H ₂ Dissociation Reaction Energy (kJ mol ⁻¹)	H ₂ Dissociation Activation Barrier (kJ mol ⁻¹)	
Metallic Pd	Pd(111)	-101	4	[12]
	Pd(100)	-78	~0	[¹³]
	Pd ₅₅	-84	9	This work
	Pd ₁₃	-73	14	This work
Bulk oxides	Pd ₁₃ O ₁₈	-250	~0	This work
	PdO(101)	-145	32, 38	[¹⁴], [¹⁵]

Table S12. Electronic reaction energies and activation barriers for H₂ dissociation on Pd and PdO models.

*Reaction energies and activation barriers are reference to $H_2(g)$ and clean Pd and PdO models. All reaction energies are from this work, while activation barriers are either from literature values or from our calculations, as noted in the table.

S7. Binding energies of O* on Pd surfaces

Figure S36: Average O* adsorption energies as a function of the oxygen coverage on Pd(111) (red squares), Pd(100) (blue circles), and Pd₁₃ (yellow triangles). The dashed lines represent the trend in adorption energies for each model. All O* atoms bind on hollow sites in all models, and the binding configurations are shown on the right panel.

S8. Pd and PdO/Pd model structures

This section contains the VASP structure files (POSCAR/CONTCAR) for Pd and PdO/Pd models used in this work. Pd_{13} , Pd_{55} , $Pd_{13}O_8$, and $Pd_{13}O_{16}$ were obtained through DFT/MD/DFT optimization. PdO(101)/Pd(100) and $Pd_5O_4/Pd(111)$ were created based on structural parameters found in literature and optimized with DFT, as outlined in Section 2.1 of the manuscript.

\mathbf{Pd}_{13}

Pd13_new.cif

1.00000000000000						
20.00000000000000 0.000	0000000000000000	00000.0 000	0000000)000)	
-0.00010000000000 20.000	0000000000000000	00000.0 000	0000000	000	0	
-0.00010000000000 -0.000	1000000000	000 20.00000	0000000	000	0	
Pd						
13						
Selective dynamics						
Direct						
0.502920000000031 0.488700	000000015	0.4878300000	0000024	F	F	F
0.6229736273433932 0.488291	7448429289	0.436102702	1495274	Т	Т	Т
0.6088592350060104 0.474466	0174517173	0.5723463353	3940603	Т	Т	Т
0.4020137421061653 0.507734	2359205029	0.3968360714	4472754	Т	Т	Т
0.3816512170387728 0.488797	6009769894	0.5340843214	4670898	Т	Т	Т
0.4453377116521494 0.605126	5698790759	0.4863224559	9380286	Т	Т	Т
0.5823220561736963 0.597580	7092078288	0.5104216609	9720172	Т	Т	Т
0.4240290675518064 0.380325	1239943553	0.4615219642	2360284	Т	Т	Т
0.5631511006429716 0.373463	1480045395	0.4859403765	5085608	Т	Т	Т
0.4747405870398105 0.403080	0335174761	0.5888745500	5195255	Т	Т	Т
0.4942954964312750 0.543048	2231104871	0.6036993270	5277353	Т	Т	Т
0.5149545272367910 0.433163	9660691007	0.3700502634	4407982	Т	Т	Т
0.5250957675948277 0.570833	7278188018	0.3804753848	8210862	Т	Т	Т

Pd₅₅ Pd55_clean.cif

0.00000000000000 31.0000000000000000 0.00000000000000000 0.0000000000000 32.000000000000000 0.000000000000000000 Pd 55 Selective dynamics Direct 0.483139999999988 0.505830000000031 0.490519999999965 F F F 0.5572562427090781 0.5058292558059099 0.4475748562143667 Т Т Т 0.5572500391507255 0.5058341665326876 0.5334730807333974 Т Т Т 0.4090312934865352 0.5058331425974992 0.4475582323399505 Т Т Т 0.4090334931929285 0.5058345894316888 0.5334658666216204 Т Т Т 0.4373114254732925 0.5775472390441497 0.4905109906067993 Т Т Т Т 0.5289601549752084 0.5775477767816827 0.4905229803034692 Т Т 0.4373111401407317 0.4341123489137576 0.4905123419589178 Т Т Т Т 0.5289651351395865 0.4341035870214163 0.4905183163814337 Т Т 0.4831380240140275 0.4614843653517699 0.5599870140480483 Т Т Т Т 0.4831387287545489 0.5501672375646220 0.5599980875625882 Т Т 0.4831454502171255 0.4614946488645765 0.4210448734151075 Т Т Т Т 0.4831550284747825 0.5501637169672604 0.4210415129521463 Т Т 0.6330996959548068 0.5058377404106055 0.4036477794315226 Т Т Т 0.6348728008074139 0.5058311600668509 0.4905276032311455 Т Т Т 0.6330875961562067 0.5058377715132703 0.5773960931432385 Т Т Т 0.3332095215879192 0.5058354503820987 0.4036232560267231 Т Т Т 0.3314203148752241 0.5058335054100407 0.4905105598498570 Т Т Т Т 0.3331999303502436 0.5058387037278438 0.5773892530809892 Т Т 0.3904641532211630 0.6509397355634713 0.4905136922819994 Т Т Т 0.4831395670137830 0.6526604737024053 0.4905198398080033 Т Т Т 0.5758178724290522 0.6509344570786233 0.4905229244202857 Т Т Т 0.3904649649495118 0.3607336642696634 0.4905108212949736 Т Т Т 0.4831371541502806 0.3590002972325766 0.4905204971370458 Т Т Т 0.5758113708803045 0.3607280716578875 0.4905202325055587 Т Т Т Т 0.4831436054412496 0.4161556565811955 0.6310853645897903 Т Т Т 0.4831510167927373 0.5058419360605313 0.6327501913628908 Т Т 0.4831466446044460 0.5955118542352896 0.6310777037221250 Т Т Т 0.4831614041172356 0.4161534558895317 0.3499547685706907 Т Т Т Т 0.4831665425882112 0.5058404406206364 0.3482853058413632 Т Т Т 0.4831622916993782 0.5955105351163711 0.3499587992938328 Т Т Т 0.5590183508208120 0.4604561736257229 0.6055970532901107 Т Т 0.5590192994285696 0.5512096475573031 0.6055953322297344 Т Т Т 0.5590280209676446 0.4604552047551331 0.3754504196056905 Т Т Т Т 0.5590304066692386 0.5512073876903086 0.3754418963837829 Т Т 0.4072722803885556 0.4604639338827348 0.6055935511246394 Т Т Т Т 0.4072757189870378 0.5512113435594560 0.6056008668603257 Т Т 0.4072816304008417 0.4604594974240971 0.3754292212966402 Т Т Т 0.4072855147401538 0.5512065157856262 0.3754325453320846 Т Т Т Т 0.6059052372512251 0.5792514234526769 0.4465687693038841 Т Т 0.6059008151330229 0.5792511539852773 0.5344734979835146 Т Т Т 0.3603880471742926 0.5792544117058925 0.4465522778772230 T Т Т 0.3603832358709819 0.5792507695583656 0.5344658840018679 T T Т

0.6059051915553896	0.4324092345410719	0.4465710074177887	Т	Т	Т
0.6058947583123958	0.4324039025295755	0.5344754097506617	Т	Т	Т
0.3603905424383326	0.4324115208908403	0.4465489221645637	Т	Т	Т
0.3603850505971809	0.4324081472701916	0.5344684493123264	Т	Т	Т
0.4362622007658801	0.6246249394698629	0.5616357204480501	Т	Т	Т
0.5300272272625950	0.6246281157217155	0.5616367021019186	Т	Т	Т
0.4362529039816069	0.3870416876843359	0.5616373279119798	Т	Т	Т
0.5300201541466628	0.3870375017029351	0.5616410711249140	Т	Т	Т
0.4362713789912681	0.6246246034360754	0.4193946483632692	Т	Т	Т
0.5300333624762126	0.6246299481323128	0.4194054239295518	Т	Т	Т
0.4362626425054001	0.3870384625932317	0.4193849107718455	Т	Т	Т
0.5300336408457610	0.3870424573061266	0.4194029903486269	Т	Т	Т

Pd13O8.cif			
1.000000000000			
20.0000000000000 0.000000000000 0.0000000	000)	
-0.00010000000000 20.00000000000000 0.000000000)00(0	
-0.00010000000000 -0.00010000000000 20.000000000000)00	0	
O Pd			
8 13			
Selective dynamics			
Direct			
0.4744035088689225 0.5105038532191405 0.3252237553137153	Т	Т	Т
0.6325412441358076 0.5841741835065658 0.4191950435239111	Т	Т	Т
0.5185512552069811 0.6424930766156350 0.5704317488998365	Т	Т	Т
0.3602919184878456 0.5710341320528253 0.4753365975487246	Т	Т	Т
0.3863211884796596 0.3949288487957965 0.5614799119018192	Т	Т	Т
0.5441314071329678 0.4665766973599409 0.6573415576369910	Т	Т	Т
0.6614932657275312 0.4096894501089875 0.5082659138424939	Т	Т	Т
0.5037550032691377 0.3358479555441008 0.4137564461901266	Т	Т	Т
0.5114999999999981 0.492559999999974 0.494210000000025	F	F	F
0.6468485517682921 0.4920121362764865 0.4541315465352913	Т	Т	Т
0.6051580276773397 0.4369202216679775 0.5853761610407322	Т	Т	Т
0.4152057525944804 0.5421442692921531 0.3983501356785297	Т	Т	Т
0.3706936886825745 0.4852761595626269 0.5238683890963803	Т	Т	Т
0.4353285857635250 0.6077128543202641 0.5287569133172887	Т	Т	Т
0.5776204853775124 0.6166614419094190 0.4952460459754087	Т	Т	Т
0.4432716574682869 0.3628210556318212 0.4875080259435323	Т	Т	Т
0.5860801298470210 0.3745682477001645 0.4535681229051093	Т	Т	Т
0.4609675012814006 0.4339670198764158 0.6139010389410696	Т	Т	Т
0.5265884516370961 0.5562650689228720 0.6191057840984404	Т	Т	Т
0.4990063528618660 0.4236024283988578 0.3671000188130679	Т	Т	Т
0.5585456243584648 0.5414332019001858 0.3683082929067851	Т	Т	Т

Pd₁₃O₁₈

Pd13O18.cif			
1.0000000000000			
20.0000000000000 0.000000000000 0.0000000	000)	
-0.00080000000000 20.0000000000000 0.0000000000	000	0	
-0.00080000000000 -0.0008000000000 20.00000000000)00	0	
O Pd			
18 13			
Selective dynamics			
Direct			
0.5951898959046230 0.3227477673474999 0.4707053437319341	Т	Т	Τ
0.5549006583632137 0.4052644205142147 0.6473071939947678	Т	Т	Τ
0.5284032604784498 0.5961675822920623 0.3759946662028336	Т	Т	Τ
0.4790770874152953 0.3506676965526571 0.5498108527930788	Т	Т	Τ
0.5756701272023441 0.5691350418292362 0.6526257961550617	Т	Т	Τ
0.4490024863465987 0.5026919024676344 0.6747897907011513	Т	Т	T
0.4092244294805275 0.4891541129816306 0.4195543057410352	Т	Т	T
0.4138357592889045 0.6283146828656875 0.4613124636044243	Т	Т	T
0.5030779024414486 0.3964775178793353 0.3917287137923587	Т	Т	T
0.6839981484298902 0.5426978621249878 0.5760874195845481	Т	Т	Τ
0.6981430046303250 0.4073895330904380 0.4310299829191762	Т	Т	T
0.6119641177546523 0.6459238078203816 0.4691989897499838	Т	Т	T
0.3874408120479306 0.4483565413823724 0.5479481167864699	Т	Т	Τ
0.6686091863398994 0.4077381037233077 0.5755471718315721	Т	Т	T
0.5993152480371281 0.4850535538362367 0.3521028038143240	Т	Т	Τ
0.5189839331127962 0.6568182720530238 0.5655592989183617	Т	Т	Τ
0.3877378473373371 0.5907321792600649 0.5903981744412944	Т	Т	Τ
0.7111178837255948 0.5469792575517468 0.4375010297524839	Т	Т	T
0.4451915622958036 0.4112187909167334 0.4746050146865912	Т	Т	T
0.4621880119519745 0.4293717493414259 0.6156277690698575	Т	Т	Τ
0.5030913325699515 0.4973935986993979 0.3795592541877547	Т	Т	Τ
0.3947594487838995 0.5435139567151701 0.5059491034964414	Т	Т	Τ
0.5792429268650039 0.3620534363825288 0.5558663267549552	Т	Т	Τ
0.539180000000018 0.499299999999981 0.510680000000007	F	F	F
0.5082636969795153 0.6384245831607953 0.4653878735101707	Т	Т	Τ
0.6043986474946756 0.3983232180463625 0.4100554945184268	Т	Т	Τ
0.6184864149385214 0.4811637827688247 0.6229845491963221	Т	Т	Τ
0.6243112379935535 0.5689496466415254 0.4050101493083635	Т	Т	Τ
0.4774949411351045 0.5820993745686909 0.6253794299191552	Т	Т	Ί
0.6967950393854291 0.4742416144950615 0.5002338095887151	Т	Т	Τ
0.6061527739972945 0.6070096417650462 0.5632230349054245	Т	Т	T

PdO(101)/Pd(100)

PdO101Pd100.cif			
1.0000000000000			
12.35500000000004 0.0000000000000 0.0000000000	000)	
0.00000000000000 12.35500000000004 0.000000000000000000000000	000)	
-0.00040000000000 -0.00040000000000 20.8604999999999	983	3	
O Pd			
16 96			
Selective dynamics			
Direct			
0.3545586954339991 0.4196300022975722 0.3756205275645035	Т	Т	Т
0.1604423396562572 0.4222640917093195 0.4302506492724312	Т	Т	Т
0.3585586910176949 0.1734735862668336 0.3778695688433899	T	Т	Т
0.1636599769369194 0.1704941851301769 0.4323404310876384	Т	Т	Т
0.8545586920014329 0.4196299994515644 0.3756205171832165	Т	Т	Т
0.6604423558625943 0.4222640966570255 0.4302506511125002	Т	Т	Т
0.8585587102248398 0.1734735992420615 0.3778695630519006	Ť	Ť	T
0.6636599763900612 0.1704941976352755 0.4323404365252514	Т	Т	Т
0.3545587026604954 0.9196299840154065 0.3756205070484546	Т	Т	Т
0.1604423185642872 0.9222640906346894 0.4302506514310792	T	Ť	Т
0.3585587195850996 0.6734735744122058 0.3778695410093918	Ť	Ť	T
0.1636599633734626 0.6704941732412228 0.4323404274848018	Т	Т	Т
0.8545587172645756 0.9196299814966539 0.3756205189883006	Т	Т	Т
0.6604423046510394 0.9222640785867139 0.4302506572157354	T	Т	Т
0.8585587150633412 0.6734735640034796 0.3778695630366453	Т	Т	Т
0.6636599741446528 0.6704941666788145 0.4323404267487546	Т	Т	Т
0.00000000000000 0.0000000000000 0.093649999999967	F	F	F
0.10000000000014 0.2999999999999972 0.093649999999967	F	F	F
0.39999999999999986 0.200000000000028 0.093649999999967	F	F	F
0.0006700529520544 0.0075910749102284 0.2803809717419430	Т	Т	Т
0.0980155250532368 0.3051699556963914 0.2876298076872452	Т	Т	Т
0.3979596540914507 0.2019082391189506 0.2826734164712718	Т	Т	Т
0.20000000000028 0.10000000000014 0.0936499999999967	F	F	F
0.29999999999999972 0.3999999999999986 0.0936499999999967	F	F	F
0.1913931555269519 0.1047504054564762 0.2826536987094543	Т	Т	Т
0.2990320760123364 0.4054410103697350 0.2814998721131244	Т	Т	Т
0.04999999999999972 0.1499999999999986 0.0000000000000000	F	F	F
0.14999999999999986 0.450000000000028 0.0000000000000000	F	F	F
0.350000000000014 0.0499999999999972 0.00000000000000000	F	F	F
0.45000000000028 0.35000000000014 0.0000000000000000000000000	F	F	F
0.04861999999999997 0.152250000000022 0.1865299999999976	F	F	F
0.149760000000006 0.4495599999999982 0.1876499999999999	F	F	F
0.3477099999999993 0.051870000000010 0.1861699999999971	F	F	F
0.4508599999999987 0.350340000000028 0.1878799999999998	F	F	F
0.25000000000000 0.25000000000000 0.0000000000	F	F	F
0.24826999999999980 0.252450000000032 0.1880299999999977	F	F	F
0.0133065208580427 0.4186332114125148 0.3951788861461673	Т	Т	Т
0.2582241691858507 0.0469117186183146 0.4031968176214019	Т	Т	Т
0.0164145684638106 0.1718756866789344 0.3980474147866350	Т	Т	Т
0.2563632171734041 0.2960679254345268 0.4040377054588384	Т	Т	Т
0.50000000000000 0.00000000000000 0.093649999999967	F	F	F
0.60000000000014 0.2999999999999972 0.0936499999999967	F	F	F

0.89999999999999986	0.200000000000028	0.09364999999999967	F	F	F
0.5006700385241952	0.0075910561329224	0.2803809758528253	Т	Т	Т
0.5980155312315699	0.3051699610824398	0.2876298167576976	Т	Т	Т
0.8979596593351955	0.2019082482656453	0.2826734171342418	Т	Т	Т
0.70000000000028	0.100000000000014	0.09364999999999967	F	F	F
0.79999999999999972	0.399999999999999986	0.09364999999999967	F	F	F
0.6913931695897854	0.1047504083747009	0.2826537010041703	Т	Т	Т
0.7990320942394388	0.4054410056210779	0.2814998831745955	Т	Т	Т
0.54999999999999972	0.14999999999999986	0.0000000000000000000000000000000000000	F	F	F
0.6499999999999986	0.450000000000028	0.0000000000000000000000000000000000000	F	F	F
0.850000000000014	0.04999999999999972	0.0000000000000000000000000000000000000	F	F	F
0.950000000000028	0.350000000000014	0.0000000000000000000000000000000000000	F	F	F
0 54861999999999997	0.1522500000000022	0 1865299999999976	F	F	F
0.649760000000000	0.4495599999999982	0.1876499999999979	F	F	F
0.847709999999999	0.0518700000000010	0.1861699999999971	F	F	F
0.04770777777777777	0.3503400000000028	0.1878799999999998	F	F	F
0.75000000000000000	0.2500000000000000000000000000000000000	0.0000000000000000000000000000000000000	F	F	F
0.7/826000000000000000000000000000000000000	0.2500000000000000000000000000000000000	0.1880200000000000000	F	F	F
0.74820999999999999	0.2324300000000032	0.1000299999999999	Г	Т	Г
0.5155005505597019	0.4180332120903434	0.3931788903904037	Т	т Т	т Т
0.7562241622064061	0.040911/0/302/940	0.4031908283293730	Т	т Т	т Т
0.3104143303030319	0.1/10/30033324221	0.39604/4133903643	т Т	т Т	т Т
0./303032134/00039	0.29000/94803/9208	0.4040377023000402	I E	T E	T E
0.0000000000000000000000000000000000000	0.3000000000000000000000000000000000000	0.09304999999999999	Г Б	Г Б	Г Г
0.100000000000014	0./999999999999972	0.0930499999999990/	Г Б	Г	Г Г
0.3999999999999999999	0.700000000000028	0.0930499999999999	Г	Г	Г
0.0006/00582900498	0.50/5910/5/3140/0	0.2803809696824//8	I T	I T	I T
0.098015531/488155	0.80516995845/8655	0.28/0298000923102	I T	I T	I T
0.39/959641/5/3459	0./019082433/3/882	0.2826/3438282808/	I T	I T	I T
0.200000000000028	0.600000000000014	0.0936499999999996/	Г Г	Г Г	Г Г
0.2999999999999972	0.899999999999999986	0.0936499999999996/	F T	Г Т	Г Т
0.1913931383286136	0.604/50412552291/	0.282653/020104/33	I T	I T	I T
0.2990320931844115	0.90544099/10092//	0.2814998856614570	I T	I T	I T
0.0499999999999972	0.64999999999999986	0.0000000000000000000000000000000000000	F	F T	F
0.14999999999999986	0.950000000000028	0.0000000000000000000000000000000000000	F	F	F
0.35000000000014	0.5499999999999972	0.0000000000000000000000000000000000000	F	F	F
0.450000000000028	0.85000000000014	0.0000000000000000000000000000000000000	F	F	F
0.0486199999999999	0.652250000000022	0.1865299999999976	F	F	F
0.149760000000006	0.9495599999999982	0.18/6499999999999999	F	F	F
0.347/0999999999993	0.5518/0000000010	0.18616999999999971	F	F	F
0.45085999999999987	0.850340000000028	0.187879999999999998	F	F	F
0.25000000000000000	0.75000000000000000	0.0000000000000000000000000000000000000	F	F	F
0.24826999999999980	0.752450000000032	0.18802999999999977	F	F	F
0.0133065489224670	0.9186332102826040	0.3951788835357513	Т	Т	Т
0.2582241800338580	0.5469117329688141	0.4031968140994222	Т	Т	Т
0.0164145627217113	0.6718756911177010	0.3980474106405156	Т	Т	Т
0.2563632177547879	0.7960679391740131	0.4040377037576492	Т	Т	Т
0.5000000000000000	0.5000000000000000	0.09364999999999967	F	F	F
0.60000000000014	0.799999999999999972	0.09364999999999967	F	F	F
0.89999999999999986	0.70000000000028	0.09364999999999967	F	F	F
0.5006700475884610	0.5075910810565635	0.2803809738262941	Т	Т	Т
0.5980155214885047	0.8051699591091440	0.2876298065529033	Т	Т	Т

0.8979596545727097	0.7019082366316279	0.2826734288510149	Т	Т	Т
0.70000000000028	0.60000000000014	0.0936499999999967	F	F	F
0.79999999999999972	0.89999999999999986	0.0936499999999967	F	F	F
0.6913931590384310	0.6047504134643136	0.2826537050376809	Т	Т	Т
0.7990320817449169	0.9054410027763894	0.2814998743606256	Т	Т	Т
0.5499999999999972	0.64999999999999986	0.0000000000000000000000000000000000000	F	F	F
0.6499999999999986	0.950000000000028	0.0000000000000000000000000000000000000	F	F	F
0.85000000000014	0.54999999999999972	0.0000000000000000000000000000000000000	F	F	F
0.95000000000028	0.850000000000014	0.0000000000000000000000000000000000000	F	F	F
0.5486199999999997	0.652250000000022	0.1865299999999976	F	F	F
0.649760000000006	0.9495599999999982	0.18764999999999979	F	F	F
0.84770999999999993	0.551870000000010	0.18616999999999971	F	F	F
0.9508599999999987	0.850340000000028	0.18787999999999998	F	F	F
0.7500000000000000000000000000000000000	0.75000000000000000	0.0000000000000000000000000000000000000	F	F	F
0.7482699999999980	0.752450000000032	0.1880299999999977	F	F	F
0.5133065495293624	0.9186332070206554	0.3951788838756740	Т	Т	Т
0.7582241716502393	0.5469117171870099	0.4031968120422710	Т	Т	Т
0.5164145555416982	0.6718756908713736	0.3980474096493727	Т	Т	Т
0.7563632161581446	0.7960679389619291	0.4040377054084138	Т	Т	Т

Pd₅O₄/Pd(111)

Pd5O4

1.0	0000000000000000000					
1	1.050700000000000	0.0000000000000000000000000000000000000	000000000000000000000000000000000000000	000)	
-1	6.576100023478392	28 28.7104000406654	194 0.000000000000	000	0	
0	.000000000000000000	0 -0.00013782267734	01 19.9999999999525	23	0	
0	Pd					
2	8 179					
Sele	ective dynamics					
Dire	ect					
0.5	670166252873852	0 0866060489346731	0 3844681880859424	т	т	т
0.5	337271602720181	0.0000000407540751	0.3360176370450177	т	т	т
0.0	867680572077800	0.2100420130838312	0.3300170370439177	Т	Т	Т
0.5	082675500775182	0.121014/170570055	0.222762222422187	Т	Т	Т
0.7	000082600250472	0.1700901050070555	0.3337022333429890	т Т	т Т	т Т
0.4	0099030902394/3	0.20944/0101329333	0.3930046021070737	т Т	т Т	т Т
0.0	10426033033031013	0.39336423209/1023	0.526/150/94959560	Т Т	I T	I T
0.9	184509854058591	0.5428290785524425	0.39/0919463210442	I T	I T	I T
0.7	1803192093/8014	0.5159588855054108	0.3823481374993414	I T	I T	I T
0.5	01/085543554486	0.5/30491861895064	0.3323261201934//3	I	I	I
0.8	629589414863127	0.6865858412135919	0.3/9041/60510/6/5	I	I	I
0.4	656414063113964	0.421302/145051891	0.3360294468053742	I T	I	I
0.8	98/336/921/5808	0.4848435536176421	0.330/590/96/6/861	T	T	T
0.1	532533405426199	0.2945955525049919	0.3797001155561786	Т	Т	Т
0.3	454342912066006	0.6171174532718130	0.3872344256851256	Т	T	T
0.1	660044050252427	0.6560918677887199	0.3348392145772617	Т	Т	Т
0.4	638668241943485	0.7847805233859156	0.3821239726785653	Т	Т	Т
0.6	953544261064661	0.7303370829751619	0.3800711616583216	Т	Т	Т
0.4	622171661918571	0.9044625816098573	0.3846214795918640	Т	Т	Т
0.2	733160663208041	0.8184797464273564	0.3919632128296677	Т	Т	Т
0.7	003003983506166	0.8774353096143315	0.3754777433975777	Т	Т	Т
0.0	169202822869172	0.0080118359606107	0.3362802793091447	Т	Т	Т
0.9	410900022971738	0.8206362494763931	0.3327139979053202	Т	Т	Т
0.2	419832553165021	0.4819663730563690	0.3804356103648970	Т	Т	Т
0.1	235311030530569	0.5351942090196320	0.4041981290297646	Т	Т	Т
0.1	528060597582550	0.1775520269912386	0.3778639091772654	Т	Т	Т
0.2	397438308439118	0.9653086452404896	0.3359757115255349	Т	Т	Т
0.7	657071306285397	0.0204215203528516	0.3205749520495252	Т	Т	Т
0.8	812054136327613	0.0969147579738523	0.3828301117325928	Т	Т	Т
0.9	847608689833792	0.9886568195947486	0.2339437918645126	Т	Т	Т
0.1	527020791419271	0.0199633928539160	0.1160143156518520	Т	Т	Т
0.0	8332999999999966	0.0555599999213072	0.000000000000000000	F	F	F
0.2	250824483687523	0.9831025910171348	0.2379685303290862	Т	Т	Т
0.3	996029178025939	0.0197190931279727	0.1173923860854308	T	Ť	Ť
0.3	3332999999999966	0.0555599999213072	0.0000000000000000000000000000000000000	F	F	F
0.0	834884999466606	0.9882448621305313	0 2321388543909744	Т	Т	Т
0.6	505354463161733	0.0209954496274598	0.1131888324064984	Т	Т	Т
0.0	83329999999999966	0.0555599999213072	0.0000000000000000000000000000000000000	F	F	F
0.7	369838165460622	0.0000000000000000000000000000000000000	0.2260192547720316	т	т	т
0.7	043780/867/0022	0.02160/10/1352/2409	0.1135776672105042	т	т	т Т
0.9	22222000000066	0.0210770277200571	0.1155770072155042	т Г	т Е	г Г
0.0	010/06007706102	0.03333333377213072	0.0000000000000000000000000000000000000	т Т	т Т	т Т
0.9	500750256524472	0.0/43/009//32/2/3	0.22337/3003001102	і т	1 T	І т
U.1	3021393303344/2	0.1032330341/49813	0.11400409/9031810	1	1	1

0.0833299999999966	0.1388899998032826	0.0000000000000000	F	F	F
0.2339637194041261	0.0712492026098991	0.2258974439963474	Т	Т	Т
0.4057176378652967	0.1040177914212336	0.1137717217554484	Т	Т	Т
0.33332999999999966	0.1388899998032826	0.0000000000000000000000000000000000000	F	F	F
0.4802440510765326	0.0712580738469201	0.2307995300625400	Т	Т	Т
0.6525505656370617	0.1050656696342134	0.1157501571090286	Т	Т	Т
0.58332999999999966	0.1388899998032826	0.0000000000000000000000000000000000000	F	F	F
0.7356575694197561	0.0748319347743601	0.2229932968577044	Т	Т	Т
0.9062303806257991	0.1050975136012436	0.1127868390824003	T	Т	Т
0.83332999999999966	0.1388899998032826	0.000000000000000000	F	F	F
0.9853817495332363	0.1560037431614201	0.2272477255442080	Т	Т	Т
0.1577607192608417	0.1888477206487847	0.1160070953395185	T	Т	Т
0.08332999999999966	0.2222199996852510	0.000000000000000000	F	F	F
0.2291832364763091	0.1547291224346348	0.2314834579094282	Т	Т	Т
0.4061951022984045	0.1882080730763313	0.1151467272659736	Ť	Т	Т
0.33332999999999966	0.2222199996852510	0.00000000000000000	F	F	F
0.4732931320435520	0.1529868913657966	0.2293859063985177	Т	Т	Т
0.6537164434610871	0.1879637450964911	0.1159237737881166	Ť	Т	Т
0.5833299999999966	0.2222199996852510	0.0000000000000000000000000000000000000	F	F	F
0.7377566182789731	0.1562765892220641	0.2314338098556734	Т	Т	Т
0.9051014037762068	0.1882014323100629	0.1131996592234172	Ť	Т	Т
0.83332999999999966	0.2222199996852510	0.0000000000000000000000000000000000000	F	F	F
0.9786309903991024	0.2386411660606175	0.2246133845355794	Т	Т	Т
0.1550692855559397	0.2721333167440021	0.1147084313809116	Ť	Т	Т
0.08332999999999966	0.3055599995672011	0.0000000000000000000000000000000000000	F	F	F
0.2226174629829061	0.2377947349315641	0.2339313580882574	Т	Т	Т
0.4024047886851551	0.2715338438436881	0.1151268722730203	Ť	Ť	Ť
0.3333299999999966	0.3055599995672011	0.000000000000000000	F	F	F
0.4661103475104431	0.2368417620066213	0.2298251606704752	Т	Т	Т
0.6516545459080115	0.2713042193469877	0.1176020019925428	Т	Т	Т
0.58332999999999966	0.3055599995672011	0.00000000000000000	F	F	F
0.7161077330281320	0.2352541894071418	0.2345773060530257	Т	Т	Т
0.8983467177398580	0.2710645037184379	0.1173065502876126	Т	Т	Т
0.83332999999999966	0.3055599995672011	0.0000000000000000000000000000000000000	F	F	F
0.9667857933838009	0.3195862830337777	0.2346728145461821	Т	Т	Т
0.1469373833926750	0.3539746969404850	0.1160331910075256	Т	Т	Т
0.08332999999999966	0.3888899994491766	0.0000000000000000000000000000000000000	F	F	F
0.2165353698582776	0.3207338006110204	0.2313483397148326	Т	Т	Т
0.4006251086739488	0.3552373880606840	0.1174330011247355	Т	Т	Т
0.33332999999999966	0.3888899994491766	0.000000000000000000	F	F	F
0.4620397195761403	0.3192253967180010	0.2303935979761160	Т	Т	Т
0.6493962907032074	0.3535374318846287	0.1141251086917742	Т	Т	Т
0.58332999999999966	0.3888899994491766	0.000000000000000000	F	F	F
0.7147321167171273	0.3184368737774568	0.2370515647526712	Т	Т	Т
0.8983253525083142	0.3540219809798808	0.1179049412596054	Т	Т	Т
0.8333299999999966	0.3888899994491766	0.00000000000000000	F	F	F
0.9626938744658113	0.4041889310480343	0.2332935496035981	Т	Т	Т
0.1458308915101564	0.4377194278064899	0.1157952042683557	Т	Т	Т
0.0833299999999966	0.4722199993311449	0.00000000000000000	F	F	F
0.2181710000386810	0.4059610425394818	0.2276298879521291	Т	Т	Т
0.3968133043929447	0.4380909264669293	0.1142785924422997	Т	Т	Т

0.3333299999999966	0.4722199993311449	0.0000000000000000000000000000000000000	F	F	F
0.4632287956182479	0.4057147071943549	0.2318677643397938	Т	Т	Т
0.6468730004670600	0.4376715436209931	0.1147937477526493	Т	Т	Т
0.58332999999999966	0.4722199993311449	0.0000000000000000000000000000000000000	F	F	F
0.7077277966989457	0.4015418869506770	0.2260763509806500	Т	Т	Т
0.8963170949094083	0.4368932644020249	0.1167147422042378	Т	Т	Т
0.83332999999999966	0.4722199993311449	0.0000000000000000000000000000000000000	F	F	F
0.9442242995086119	0.4872288538443371	0.2325506110957933	Т	Т	Т
0.1415073248811346	0.5204100576208242	0.1190072810103983	T	Т	Т
0.08332999999999966	0.5555599992131022	0.000000000000000000	F	F	F
0.2067570024253900	0.4872429771818582	0.2338439509369939	Т	Т	Т
0.3908946025584076	0.5214420607399605	0.1157854085427512	T	Т	Т
0.33332999999999966	0.5555599992131022	0.000000000000000000	F	F	F
0.4610792477338719	0.4901262129684542	0.2277025395575989	Т	Т	Т
0.6426587566256734	0.5218046387882666	0.1145148047854980	Т	Т	Т
0.58332999999999966	0.5555599992131022	0.00000000000000000	F	F	F
0.7042553589329748	0.4905303753175166	0.2260208325262565	Т	Т	Т
0.8938186404018675	0.5204450820932542	0.1139720624011421	Ť	Т	Т
0.8333299999999966	0.5555599992131022	0.0000000000000000000000000000000000000	F	F	F
0.9568939929551220	0.5715363988525682	0.2273808790387913	Т	Т	Т
0.1419432764350105	0.6035890103953128	0.1173200292663635	Ť	Ť	T
0.08332999999999966	0.6388899990950776	0.0000000000000000000000000000000000000	F	F	F
0.2016515075998930	0.5691265575325631	0.2364791221597899	Т	Т	Т
0.3903293424855436	0.6042623520193242	0.1185224693054829	Ť	Т	Т
0.33332999999999966	0.6388899990950776	0.0000000000000000000000000000000000000	F	F	F
0.4569177861528716	0.5720236276313342	0.2313512301075094	Т	Т	Т
0.6418789308027759	0.6049109410208717	0.1145869453819253	Ť	T	T
0.58332999999999966	0.6388899990950776	0.000000000000000000	F	F	F
0.7109013464374727	0.5740534006076260	0.2292477511782223	Т	Т	Т
0.8917419503874855	0.6042581275744343	0.1142735380264627	Т	Т	Т
0.8333299999999966	0.6388899990950776	0.00000000000000000	F	F	F
0.9544614612385950	0.6547341790282242	0.2270569980432140	Т	Т	Т
0.1419718153690167	0.6870533604020397	0.1134030667057258	Т	Т	Т
0.0833299999999966	0.7222199989770459	0.000000000000000000	F	F	F
0.2002977930233417	0.6529938593809017	0.2322689499783459	Т	Т	Т
0.3899922138426990	0.6873715836799372	0.1175597879384668	Т	Т	Т
0.33332999999999966	0.7222199989770459	0.0000000000000000000000000000000000000	F	F	F
0.4520180581161674	0.6528404015656459	0.2351007554179960	Т	Т	Т
0.6395163965462624	0.6877142038963170	0.1153665247893702	Т	Т	Т
0.58332999999999966	0.7222199989770459	0.0000000000000000000000000000000000000	F	F	F
0.7073398920143156	0.6566718637724267	0.2285174902146800	Т	Т	Т
0.8913447696364012	0.6876786216862193	0.1139736723705091	Т	Т	Т
0.83332999999999966	0.7222199989770459	0.0000000000000000000000000000000000000	F	F	F
0.9622925145243231	0.7378589803463489	0.2285074437289106	Т	Т	Т
0.1420800724780857	0.7707590331202286	0.1148389367562173	Т	Т	Т
0.08332999999999966	0.8055599988590032	0.0000000000000000000000000000000000000	F	F	F
0.2125228151614820	0.7367806049616346	0.2252685989974335	Т	Т	Т
0.3949006662525897	0.7712182244999567	0.1171938053288151	Т	Т	Т
0.33332999999999966	0.8055599988590032	0.0000000000000000000000000000000000000	F	F	F
0.4598857452437162	0.7356291091174929	0.2354891940987462	Т	Т	Т
0.6405198141519267	0.7708418638090323	0.1165526407919477	Т	Т	Т

0.5833299999999966	0.8055599988590032	0.0000000000000000000000000000000000000	F	F	F
0.7062400577172222	0.7368264648004296	0.2317904247570819	Т	Т	Т
0.8896527506249976	0.7706431296469276	0.1154774123739844	Т	Т	Т
0.83332999999999966	0.8055599988590032	0.0000000000000000000000000000000000000	F	F	F
0.9577369095876086	0.8201947037685158	0.2294233491238648	Т	Т	Т
0.1422606998059051	0.8534242516924999	0.1157668423540517	Т	Т	Т
0.08332999999999966	0.8888899987409786	0.000000000000000000	F	F	F
0 2138549187461138	0 8198360587358943	0 2320194544815400	Т	Т	Т
0.3932084854281477	0.8536022050883010	0.1177798466972761	Ť	Ť	Ť
0.33332999999999966	0.8888899987409786	0.0000000000000000000000000000000000000	F	F	F
0.4603921928393687	0.8184489951667987	0 2375407764207325	Т	Т	Т
0.6426587417367099	0.8544303023943516	0.1174858212366356	Ť	Ť	Ť
0 58332999999999966	0 8888899987409786	0.0000000000000000000000000000000000000	F	F	F
0.7069830766551294	0.8191546619454245	0.2313532085287660	Т	т	Т
0.8921392670011673	0.8545586101707676	0.1159893801290697	т	т	т
0.83332000000000066	0.8888899987409786	0.0000000000000000000000000000000000000	F	F	F
0.05552777636156735	0.0000000000000000000000000000000000000	0.2350665838357242	Т	т	Т
0.1/107/1810585/13/8	0.9662600735/11375	0.1177700611538126	т	т	Т
0.0822200000000066	0.9500209075541575	0.11///99011558120	т Б	г Г	г Г
0.083329999999999900	0.9/22199980229409	0.2202150551006225	Г	Г	г Т
0.2166190304570655	0.9010033339218/13	0.2303139331090233	і Т	т Т	т Т
0.3900293/49023/43	0.930/983391903930	0.110/832011380/20	I E	T E	T E
0.3333299999999999900	0.9/22199980229409	0.0000000000000000000000000000000000000	Г	Г	Г
0.4098008023394370	0.902/0381308/3130	0.25269/51/1219956	I T	I T	I T
0.040/40223030094/	0.95//4/3428515590	0.11///20944/10210	I E	I E	T E
0.3833299999999999900	0.9/22199980229409	0.0000000000000000000000000000000000000	Г	Г	Г
0./14334/583884089	0.90262/205//34389	0.23345901/24320/2	I T	I T	I T
0.890/389083984/29	0.938101/833040930	0.1200249280882819	I E	I E	T E
0.833329999999999900	0.9/22199986229469	0.0000000000000000000000000000000000000	Г Т	Г Т	Г Т
0.5923054906118160	0.1484466302802901	0.35624/134/665159	I T	I T	I T
0.49/649/2/4564018	0.23/80496134//86/	0.35/3064298409/13	I	I	I T
0.5226562806985366	0.3320482393017595	0.3509019382877012	I T	I T	I T
0.7898228555345363	0.28021/9304693035	0.363/53246392/359	I	I	I
0.8210851628024621	0.3/33430028931462	0.3584242363563335	I	I	I
0.195360531//21968	0.2429233275590078	0.365455361//9/143	I	I	I
0.6919231546089049	0.4540/1255946/934	0.348/4052/2154/33	T	T	T
0.5908630787566755	0.5347973442072314	0.3512854604316639	T	T	T
0.6833325654122032	0.6327370905264458	0.3529020250588616	Т	Т	Т
0.8/11490108334319	0.5756691137120883	0.3468067650842503	T	T	T
0.0058824580422922	0.669222/9/138/541	0.3533840826837870	Т	Т	Т
0.3070135254953996	0.3555272518375392	0.3528997216156002	Т	Т	Т
0.1344986091750278	0.5922711248324130	0.3615940364003297	Т	Т	Т
0.3186105839634835	0.7218458505784192	0.3549508250968495	Т	Т	Т
0.5204019163875175	0.6715463397981730	0.3622125711541226	Т	Т	Т
0.6021507257569765	0.7661966387165424	0.3659435178229207	Т	Т	Т
0.4755705357122331	0.8464386933005978	0.3682669922334864	Т	Т	Т
0.1568985757294576	0.7606886683559632	0.3400382598076994	Т	Т	Т
0.1388584775476055	0.8371518381035701	0.3601978160402770	Т	Т	Т
0.3389547831763438	0.9291178300908408	0.3507375590609930	Т	Т	Т
0.6254728004455814	0.9595475703646872	0.3535355109118798	Т	Т	Т
0.8443012262381695	0.9418987428670840	0.3529026325787182	Т	Т	Т
0.8931427707039143	0.7504624590495290	0.3516711836849597	Т	Т	Т

0.8161179793538190	0.8491644456741895	0.3514601179622129	Т	Т	Т
0.3138886583573748	0.5524476169592969	0.3735080904429235	Т	Т	Т
0.0863488342101715	0.3755652753787988	0.3398520249054682	Т	Т	Т
0.3518197235914913	0.4536979768741931	0.3499930580582279	Т	Т	Т
0.2737713055789250	0.1521472009147584	0.3590735057410078	Т	Т	Т
0.2235087987782301	0.0603486630827909	0.3531083501611915	Т	Т	Т
0.4017308888304791	0.0274474691026459	0.3546258105274678	Т	Т	Т
0.6776101472388439	0.0592855351743349	0.3496827945648612	Т	Т	Т
0.9597639244268090	0.2452999474330537	0.3506353710611390	Т	Т	Т
0.9598444324614100	0.1627154774652308	0.3545885656463957	Т	Т	Т
0.9705795819240004	0.0586923839617408	0.3544904025957027	Т	Т	Т
0.0466508913491636	0.4706892756542791	0.3555053672466668	Т	Т	Т

References

(1) Doye, J. P. K.; Wales, D. J. Global Minima for Transition Metal Clusters Described by Sutton– Chen Potentials. New Journal of Chemistry 1998, 22 (7), 733–744. <u>https://doi.org/10.1039/A709249K</u>.

(2) Rapps, T.; Ahlrichs, R.; Waldt, E.; Kappes, M. M.; Schooss, D.; Rapps, T.; Ahlrichs, R.; Waldt, E.; Kappes, M. M.; Schooss, D. On the Structures of 55-Atom Transition-Metal Clusters and Their Relationship to the Crystalline Bulk. Angewandte Chemie International Edition 2013, 52 (23), 6102–6105. <u>https://doi.org/10.1002/ANIE.201302165</u>.

(3) Xing, X.; Hermann, A.; Kuang, X.; Ju, M.; Lu, C.; Jin, Y.; Xia, X.; Maroulis, G. Insights into the Geometries, Electronic and Magnetic Properties of Neutral and Charged Palladium Clusters. Scientific Reports 2016, 6 (1), 1–11. <u>https://doi.org/10.1038/srep19656</u>.

(4) Nava, P.; Sierka, M..; Ahlrichs, R. Density Functional Study of Palladium Clusters. Physical Chemistry Chemical Physics 2003, 34 (43). <u>https://doi.org/10.1039/B303347C</u>

(5) Reuter, K.; Scheffler, M. Composition and Structure of the RuO_2 110 Surface in an O_2 and CO Environment: Implications for the Catalytic Formation of CO_2 .

https://doi.org/10.1103/PhysRevB.68.045407.

(6) Rogal, J.; Reuter K. Ab Initio Atomistic Thermodynamics for Surfaces: A Primer. 2007.

(7) Plauck, A.; Stangland, E. E.; Dumesic, J. A.; Mavrikakis, M. Active Sites and Mechanisms for H₂O₂ Decomposition over Pd Catalysts. Proc Natl Acad Sci U S A 2016, 113 (14), E1973–E1982. https://doi.org/10.1073/pnas.1602172113.

(8) McQuarrie, D. A. Statistical Mechanics. 2000, 641.

(9) Flaherty, D. W. Direct Synthesis of H_2O_2 from H_2 and O_2 on Pd Catalysts: Current Understanding, Outstanding Questions, and Research Needs. ACS Catal 2018, 8 (2), 1520–1527. https://doi.org/10.1021/acscatal.7b04107

(10) Bravo-Suárez, J. J.; Bando, K. K.; Akita, T.; Fujitani, T.; Fuhrer, T. J.; Oyama, S. T. Propane Reacts with O₂ and H₂ on Gold Supported TS-1 to Form Oxygenates with High Selectivity. *Chemical Communications* 2008, No. 28, 3272–3274. https://doi.org/10.1039/B800620B.

(11) Campbell, C. T.; Selers, J. R. V. The Entropies of Adsorbed Molecules. J Am Chem Soc 2012, 134 (43), 18109–18115. <u>https://doi.org/10.1021/ja3080117</u>

(12) Li, J.; Ishihara, T.; Yoshizawa, K. Theoretical Revisit of the Direct Synthesis of H₂O₂ on Pd and Au@Pd Surfaces: A Comprehensive Mechanistic Study. Journal of Physical Chemistry C 2011, 115 (51), 25359–25367. https://doi.org/10.1021/jp208118e

(13) Tian, P.; Ouyang, L.; Xu, X; Han, Y. F. Density functional theory study of direct synthesis of H_2O_2 from H_2 and O_2 on Pd(111), Pd(100), and Pd(110) surfaces. Chinese Journal of Catalysis. 2013, 34 (5), 1002-1012.. <u>https://doi.org/10.1016/S1872-2067(12)60537-3</u>

(14) Martin, N. M.; Van Den Bossche, M.; Grönbeck, H.; Hakanoglu, C.; Gustafson, J.; Blomberg, S.; Arman, M. A.; Antony, A.; Rai, R.; Asthagiri, A.; Weaver, J. F.; Lundgren, E. Dissociative Adsorption of Hydrogen on PdO(101) Studied by HRCLS and DFT. Journal of Physical Chemistry C 2013, 117 (26), 13510–13519. <u>https://doi.org/10.1021/jp4036698</u>

(15) Sun, X.; Peng, X.; Xu, X.; Jin, H.; Wang, H.; Wang, X. H₂ Adsorption and Dissociation on PdO(101) Films Supported on Rutile TiO₂ (110) Facet: Elucidating the Support Effect by DFT Calculations. J Mol Model 2016, 22 (9), 1–8. <u>https://doi.prg/10.1007/s00894-016-3072-3</u>