Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Copper-Based Metal-Organic Frameworks for CO₂ Reduction: Selectivity Trends, Design Paradigms, and Perspectives

Ugochukwu Nwosu^a and Samira Siahrostami*^a

Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada

*E-mail: samira.siahrostami@ucalgary.ca

Table of Contents

Table S1: CO2RR Faradaic Efficiencies for Cu MOF and Cu MOF Composites.	
Table S2: >2e ⁻ Product Faradaic Efficiencies for Cu MOF and Cu MOF Composites	
Table S3: C ₂₊ Product Faradaic Efficiencies for Cu MOF and Cu MOF Composites	
Data Aggregation Methodology	

Ref	Cu MOF	Cluster or Node- based ¹	Secondary Building Unit	Cu Oxidation State	Electrolyte	Cell Type	FE CO ₂ RR ²	Reported Potential (V)	Scale	Total Current Density (mA cm ⁻²) ³	Evidence of In Situ Transformation ⁴
1	CuAdeAce	cluster	$Cu_2(ade)_2(ace)_2$	NR*	0.5 M KHCO ₃	Flow	1.2	-1.75	Ag/AgCl	10	Yes
1	HKUST-1	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	15.9	-0.9	Ag/AgCl	10	Yes
2	CuBi9	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	55	-0.36	RHE	20	No
2	CuBi12	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	66.3	-0.21	RHE	20	Yes
2	CuBi84	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	61	-0.34	RHE	20	No
2	Cu100	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	40	-0.59	RHE	20	Yes
3	Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	70	-1.35	RHE	120	Yes
3	NH ₂ -Cu–BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	75	-0.85	RHE	60	Yes
3	OH-Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	66	-1.01	RHE	60	Yes
3	F-Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	81	-1.21	RHE	90	Yes
3	2F-Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	79	-1.45	RHE	150	Yes
4	NNU-50	cluster	Cu ₆ MePz	NR*	1 M KOH	Flow	87.49	-0.6	RHE	54	No
5	CR-MOF	node	CuN_2S_2	NR*	0.5 M KHCO ₃	Н	30	-1.6	SHE	20.95	No
6	Cu ₃ (HHTP) ₂	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	1.9	-0.3	RHE	0.5	No
6	Cu ₃ (HHTQ) ₂	node	CuO ₄	+2	0.1 M KHCO ₃	Н	53.6	-0.4	RHE	0.5	No
7	HATNA-Cu-MOF	node	CuO ₄	+1, +2	0.1 M KHCO ₃	Н	81	-1.5	RHE	10.5	No
8	Cu-DBC	node	CuO ₅	+1, +2	0.1 M KHCO ₃	Н	68	-1.4	RHE	11.4	No
9	Cu-THQ	node	CuO ₄	+1, +2	1 M choline chloride + 1 M KOH	Н	91	-0.43	RHE	173	No
10	Cu ₃ (HHTP) ₂	node	CuO ₄	NR*	KHCO3	Н	4.3	-0.64	RHE	NR*	No
10	CoPc-Cu-O	node	CuO ₄	+1, +2	KHCO3	Н	85	-0.74	RHE	17.1	No
10	CoPc-Cu-NH	node	CuN ₄	+1, +2	KHCO3	Н	72	-0.74	RHE	11.6	No

Table S1: CO₂RR Faradaic Efficiencies for Cu MOF and Cu MOF Composites.

10	NiPc-Cu-O	node	CuO ₄	+1, +2	KHCO3	Н	56	-0.74	RHE	7.3	Yes
10	NiPc-Cu-NH	node	CuN ₄	+1, +2	KHCO3	Н	43	-0.74	RHE	6.1	No
10	Pc-Cu-O	node	CuO ₄	+1, +2	KHCO3	Н	5.6	-0.74	RHE	7.5	Yes
10	Pc-Cu-NH	node	CuN ₄	+1, +2	KHCO3	Н	4.5	-0.74	RHE	8	No
10	Cu ₃ (HITP) ₂	node	CuN ₄	NR*	KHCO3	Н	3.3	-0.74	RHE	n/a	No
11	HKUST-1	cluster	Cu ₂ (COO) ₄	+2	1 M KOH	Flow	57	-1.08	RHE	NR*	Yes
11	HKUST-1 (thermally treated)	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	70	-1.07	RHE	262	Yes
12	PcCu-Cu-O	node	CuO ₄	+1, +2	0.1 M KHCO ₃	Н	68	-1.4	RHE	7.8	No
12	PcCo-Cu-O	node	CuO ₄	NR*	0.1 M KHCO3	Н	60	-1	RHE	NR*	No
12	Cu-HHTP	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	50	-1.2	RHE	NR*	No
13	HKUST-1	cluster	Cu ₂ (COO) ₄	0, +1, +2	0.01 M TBATFB/DMF	3EC^	51	-2.5	Ag/Ag ⁺	NR*	No
14	Cu ₂ O@Cu-MOF	cluster	Cu ₂ (COO) ₄	0, +1, +2	0.1 M KHCO3	Н	89.1	-1.71	RHE	13.29	Yes
14	Cu-MOF	cluster	Cu ₂ (COO) ₄	+1, +2	0.1 M KHCO3	Н	49.7	-1.71	RHE	n/a	Yes
15	PCZ-2	cluster	Cu ₂ (COO) ₄	0, +1, +2	0.1 M KHCO ₃	Н	95	-0.75	RHE	2.6	No
16	Cu-MOF-74	cluster	Cu-O-C rod	+1, +2	0.1 M KHCO3	Н	87	-1.8	SCE	4	No
17	CuO/Cu-MOF	cluster	Cu ₂ (COO) ₄	+2	0.1 M KHCO ₃	Н	65	-1.1	RHE	14	Yes
17	Cu-MOF	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	49	-1.1	RHE	12.7	No
17	2Cl-Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO3	Н	40	-1.1	RHE	10	No
17	2Br-Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	44	-1.1	RHE	10	No
17	20H-Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	6	-1.1	RHE	NR*	No
17	2NH ₂ -Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO3	Н	9	-1.1	RHE	NR*	No
17	NH ₂ -Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO3	Н	8	-1.1	RHE	NR*	No
18	PA-Cu-DBC-1	node	CuO ₅	+2	0.5 M KHCO ₃	Н	96.5	-1.1	RHE	47	No
18	PA-Cu-DBC-2	node	CuO ₅	+2	0.5 M KHCO ₃	Н	71	-1.1	RHE	36	No
18	Cu-DBC	node	CuO ₅	+2	0.5 M KHCO ₃	Н	54	-1	RHE	16	No

19	Cu ₂ (CuTCPP)	cluster	Cu ₂ (COO) ₄	+1, +2	CH ₃ CN/H ₂ O/EMIMBF ₄	Н	97.2	-1.55	Ag/Ag ⁺	5.1	Yes
20	H-CuTCPP@Cu(OH) ₂	cluster	Cu ₂ (COO) ₄	0, +1, +2	CH ₃ CN/H ₂ O/EMIMBF ₄	Н	56	-1.7	Ag/Ag ⁺	10	Yes
20	nH-CuTCPP@Cu(OH)2	cluster	Cu ₂ (COO) ₄	0, +1, +2	CH ₃ CN/H ₂ O/EMIMBF ₄	Н	53	-1.7	Ag/Ag ⁺	8	Yes
21	Cul	node	CuN ₂	+1, +2	0.1 M KHCO3	Н	77.5	-0.89	RHE	4.5	Yes
21	Cu2	node	CuN ₄	NR*	0.1 M KHCO3	Н	64.6	-0.96	RHE	4.5	No
21	Cu3	node	CuN ₄	NR*	0.1 M KHCO3	Н	50.5	-0.99	RHE	4.4	No
22	Cu ₂ O@Cu-HHTP	node	CuO ₄	+1, +2	0.1 M KCl + 0.1 M KHCO ₃	Н	80	-1.4	RHE	14.8	Yes
22	Cu-HHTP	node	CuO ₄	+2	0.1 M KCl + 0.1 M KHCO ₃	Н	20	-1.4	RHE	9.5	Yes
23	Cu-DBC	node	CuO ₅	+1, +2	1 M KOH	Flow	86.5	-0.9	RHE	203	No
23	Cu-HHTP	node	CuO ₄	NR*	1 M KOH	Flow	88.5	-0.9	RHE	190	No
24	Cu(111)@Cu-THQ	node	CuO ₄	0, +1, +2	0.1 M KHCO ₃	Н	78.2	-1.2	RHE	8.2	No
25	Cu-HITP	node	CuN ₄	+2	0.1 M KHCO ₃	Н	82	-1.2	RHE	NR	No
25	Cu-HITP@PDA	node	CuN ₄	+2	0.1 M KHCO ₃	Н	87.15	-1.2	RHE	4.76	No
25	Cu-HITP@PANI	node	CuN ₄	+2	0.1 M KHCO ₃	Н	88.5	-1.2	RHE	NR	No
25	Cu-HITP@PPV	node	CuN ₄	+2	0.1 M KHCO ₃	Н	71	-1.2	RHE	NR	No
26	PcCu-O ₈ -Cu	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	10	-1.1	RHE	16	No
26	PcZn-O ₈ -Cu	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	10	-1.1	RHE	10	No
27	CPF	cluster	Cu ₂ (COO) ₄	+2	0.1 M KHCO ₃	Н	81.57	-1.4	RHE	10.1	Yes
28	CuBDC	cluster	Cu ₂ (COO) ₄	+2	0.1 M KI	Н	67	-1.1	RHE	NR*	No
28	Cu ₂ BDC	cluster	Cu ₂ (OH) ₂ (COO) ₄	+1, +2	0.1 M KI	Н	65	-1.3	RHE	NR*	No
29	Cu ₄ ^{II} -MFU-41	cluster	Cu ₄ Zn	+1, +2	0.5 M NaHCO ₃	Н	98	-1.2	RHE	10.65	No
30	MAF-2E	cluster	Cu ₂ N ₄	+1	0.1 M KHCO ₃	Н	75.9	-1.3	RHE	10.9	No
30	MAF-2ME	cluster	Cu ₂ N ₄	+1	0.1 M KHCO ₃	Н	68.6	-1.2	RHE	9	No
30	MAF-2P	cluster	Cu ₂ N ₄	+1	0.1 M KHCO ₃	Н	81	-1.4	RHE	13	No

[†] name used in original publication. See Supplementary Data File for alternative names. * not reported. ^ three-electrode single compartment cell

Ref	Cu MOF	Cluster or Node- based ¹	Secondary Building Unit	Cu Oxidation State	Electrolyte	Cell Type	FE >2e ⁻²	Reported Potential (V)	Scale	Total Current Density (mA cm ⁻²) ³	Evidence of In Situ Transformation ⁴
1	CuAdeAce	cluster	Cu ₂ (ade) ₂ (ace) ₂	NR*	0.5 M KHCO ₃	Flow	1.2	-1.75	Ag/AgCl	10	Yes
1	HKUST-1	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	15.9	-0.9	Ag/AgCl	10	Yes
2	CuBi9	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	31	-0.36	RHE	20	No
2	CuBi12	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	42.3	-0.21	RHE	20	Yes
2	CuBi84	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	9	-0.34	RHE	20	No
2	Cu100	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	20	-0.59	RHE	20	Yes
3	Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	50	-1.35	RHE	120	Yes
3	NH ₂ -Cu–BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	46	-1.62	RHE	180	Yes
3	OH-Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	44	-1.71	RHE	180	Yes
3	F-Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	54	-1.77	RHE	180	Yes
3	2F-Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	69	-1.45	RHE	150	Yes
4	NNU-50	cluster	Cu ₆ MePz	NR*	1 M KOH	Flow	81.5	-1	RHE	398.02	No
5	CR-MOF	node	CuN_2S_2	NR*	0.5 M KHCO ₃	Н	0	-1.6	SHE	20.95	No
6	Cu ₃ (HHTP) ₂	node	CuO ₄	NR*	0.1 M KHCO3	Н	1.9	-0.3	RHE	0.5	No
6	Cu ₃ (HHTQ) ₂	node	CuO ₄	+2	0.1 M KHCO3	Н	53.6	-0.4	RHE	0.5	No
7	HATNA-Cu-MOF	node	CuO ₄	+1, +2	0.1 M KHCO3	Н	80	-1.5	RHE	10.5	No
8	Cu-DBC	node	CuO ₅	+1, +2	0.1 M KHCO3	Н	67	-1.4	RHE	11.4	No
9	Cu-THQ	node	CuO ₄	+1, +2	1 M choline chloride + 1 M KOH	Н	0	-0.43	RHE	173	No
10	Cu ₃ (HHTP) ₂	node	CuO ₄	NR*	KHCO3	Н	0	-0.64	RHE	NR*	No
10	CoPc-Cu-O	node	CuO ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	17.1	No
10	CoPc-Cu-NH	node	CuN ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	11.6	No

Table S2: >2e⁻ Product Faradaic Efficiencies for Cu MOF and Cu MOF Composites.

10	NiPc-Cu-O	node	CuO ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	7.3	Yes
10	NiPc-Cu-NH	node	CuN ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	6.1	No
10	Pc-Cu-O	node	CuO ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	7.5	Yes
10	Pc-Cu-NH	node	CuN ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	8	No
10	Cu ₃ (HITP) ₂	node	CuN ₄	NR*	KHCO3	Н	0	-0.74	RHE	n/a	No
11	HKUST-1	cluster	Cu ₂ (COO) ₄	+2	1 M KOH	Flow	30	-1.08	RHE	NR*	Yes
11	HKUST-1 (thermally treated)	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	45	-1.07	RHE	262	Yes
12	PcCu-Cu-O	node	CuO ₄	+1, +2	0.1 M KHCO ₃	Н	68	-1.4	RHE	7.8	No
12	PcCo-Cu-O	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	12	-1.2	RHE	NR*	No
12	Cu-HHTP	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	0	-1.2	RHE	NR*	No
13	HKUST-1	cluster	Cu ₂ (COO) ₄	0, +1, +2	0.01 M TBATFB/DMF	3EC^	51	-2.5	Ag/Ag+	NR*	No
14	Cu ₂ O@Cu-MOF	cluster	Cu ₂ (COO) ₄	0, +1, +2	0.1 M KHCO ₃	Н	83.5	-1.71	RHE	13.29	Yes
14	Cu-MOF	cluster	Cu ₂ (COO) ₄	+1, +2	0.1 M KHCO ₃	Н	49.7	-1.71	RHE	n/a	Yes
15	PCZ-2	cluster	Cu ₂ (COO) ₄	0, +1, +2	0.1 M KHCO ₃	Н	0	-0.75	RHE	2.6	No
16	Cu-MOF-74	cluster	Cu-O-C rod	+1, +2	0.1 M KHCO ₃	Н	0	-1.8	SCE	4	No
17	CuO/Cu-MOF	cluster	Cu ₂ (COO) ₄	+2	0.1 M KHCO ₃	Н	57	-1.1	RHE	14	Yes
17	Cu-MOF	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	40	-1.1	RHE	12.7	No
17	2Cl-Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	26	-1.1	RHE	10	No
17	2Br-Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	30	-1.1	RHE	10	No
17	20H-Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	4	-1.1	RHE	NR*	No
17	2NH ₂ -Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	6	-1.1	RHE	NR*	No
17	NH ₂ -Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO3	Н	5	-1.1	RHE	NR*	No
18	PA-Cu-DBC-1	node	CuO ₅	+2	0.5 M KHCO ₃	Н	82.4	-1.1	RHE	47	No
18	PA-Cu-DBC-2	node	CuO ₅	+2	0.5 M KHCO3	Н	42	-1.1	RHE	36	No
18	Cu-DBC	node	CuO ₅	+2	0.5 M KHCO ₃	Н	12	-1	RHE	16	No

19	Cu ₂ (CuTCPP)	cluster	Cu ₂ (COO) ₄	+1, +2	CH ₃ CN/H ₂ O/EMIMBF ₄	Н	16.8	-1.55	Ag/Ag ⁺	5.1	Yes
20	H-CuTCPP@Cu(OH) ₂	cluster	Cu ₂ (COO) ₄	0, +1, +2	CH ₃ CN/H ₂ O/EMIMBF ₄	Н	26.1	-1.6	Ag/Ag ⁺	8	Yes
20	nH-CuTCPP@Cu(OH)2	cluster	Cu ₂ (COO) ₄	0, +1, +2	CH ₃ CN/H ₂ O/EMIMBF ₄	Н	19.8	-1.6	Ag/Ag ⁺	7	Yes
21	Cul	node	CuN ₂	+1, +2	0.1 M KHCO3	Н	0	-0.89	RHE	4.5	Yes
21	Cu2	node	CuN ₄	NR*	0.1 M KHCO3	Н	0	-0.96	RHE	4.5	No
21	Cu3	node	CuN ₄	NR*	0.1 M KHCO ₃	Н	0	-0.99	RHE	4.4	No
22	Cu ₂ O@Cu-HHTP	node	CuO ₄	+1, +2	0.1 M KCl + 0.1 M KHCO ₃	Н	76	-1.4	RHE	14.8	Yes
22	Cu-HHTP	node	CuO ₄	+2	0.1 M KCl + 0.1 M KHCO ₃	Н	0	-1.4	RHE	9.5	Yes
23	Cu-DBC	node	CuO ₅	+1, +2	1 M KOH	Flow	86	-0.9	RHE	203	No
23	Cu-HHTP	node	CuO ₄	NR*	1 M KOH	Flow	83.5	-0.9	RHE	190	No
24	Cu(111)@Cu-THQ	node	CuO ₄	0, +1, +2	0.1 M KHCO ₃	Н	76.4	-1.6	RHE	21	No
25	Cu-HITP	node	CuN ₄	NR*	0.1 M KHCO ₃	Н	62	-1.2	RHE	NR*	No
25	Cu-HITP@PDA	node	CuN ₄	+2	0.1 M KHCO ₃	Н	79.85	-1.2	RHE	4.76	No
25	Cu-HITP@PANI	node	CuN ₄	NR*	0.1 M KHCO ₃	Н	73.5	-1.2	RHE	NR*	No
25	Cu-HITP@PPV	node	CuN ₄	NR*	0.1 M KHCO ₃	Н	58	-1.2	RHE	NR*	No
26	PcCu-O ₈ -Cu	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	0	-1.1	RHE	16	No
26	PcZn-O ₈ -Cu	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	0	-1.1	RHE	10	No
27	CPF	cluster	Cu ₂ (COO) ₄	+2	0.1 M KHCO ₃	Н	73.57	-1.4	RHE	10.1	Yes
28	CuBDC	cluster	Cu ₂ (COO) ₄	+2	0.1 M KI	Н	31	-1.4	RHE	NR*	No
28	Cu ₂ BDC	cluster	Cu ₂ (OH) ₂ (COO) ₄	+1, +2	0.1 M KI	Н	48	-1.3	RHE	NR*	No
29	Cu4 ^{II} -MFU-41	cluster	$\mathrm{Cu}_4\mathrm{Zn}$	+1, +2	0.5 M NaHCO ₃	Н	92	-1.2	RHE	10.65	No
30	MAF-2E	cluster	Cu ₂ N ₄	+1	0.1 M KHCO ₃	Н	70.7	-1.4	RHE	16	No
30	MAF-2ME	cluster	Cu_2N_4	+1	0.1 M KHCO ₃	Н	57.9	-1.5	RHE	17.5	No
30	MAF-2P	cluster	Cu ₂ N ₄	+1	0.1 M KHCO ₃	Н	77.1	-1.5	RHE	14	No

[†] name used in original publication. See Supplementary Data File for alternative names. * not reported. ^ three-electrode single compartment cell

Ref	Cu MOF	Cluster or Node- based ¹	Secondary Building Unit	Cu Oxidation State	Electrolyte	Cell Type	FE C ₂₊ ²	Reported Potential (V)	Scale	Total Current Density (mA cm ⁻²) ³	Evidence of In Situ Transformation ⁴
1	CuAdeAce	cluster	Cu ₂ (ade) ₂ (ace) ₂	NR*	0.5 M KHCO ₃	Flow	0.5	-1.75	Ag/AgCl	10	Yes
1	HKUST-1	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	10.3	-0.9	Ag/AgCl	10	Yes
2	CuBi9	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	21	-0.36	RHE	20	No
2	CuBi12	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	33.3	-0.21	RHE	20	Yes
2	CuBi84	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	3	-0.34	RHE	20	No
2	Cu100	cluster	Cu ₂ (COO) ₄	NR*	0.5 M KHCO ₃	Flow	18	-0.59	RHE	20	Yes
3	Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	42	-1.35	RHE	120	Yes
3	NH ₂ -Cu–BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	24	-1.38	RHE	150	Yes
3	OH-Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	29	-1.71	RHE	180	Yes
3	F-Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	47	-1.21	RHE	90	Yes
3	2F-Cu-BDC	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	63	-1.45	RHE	150	Yes
4	NNU-50	cluster	Cu ₆ MePz	NR*	1 M KOH	Flow	29.12	-0.8	RHE	183	No
5	CR-MOF	node	CuN ₂ S ₂	NR*	0.5 M KHCO ₃	Н	0	-1.6	SHE	20.95	No
6	Cu ₃ (HHTP) ₂	node	CuO ₄	NR*	0.1 M KHCO3	Н	1.9	-0.3	RHE	0.5	No
6	Cu ₃ (HHTQ) ₂	node	CuO ₄	+2	0.1 M KHCO ₃	Н	53.6	-0.4	RHE	0.5	No
7	HATNA-Cu-MOF	node	CuO ₄	+1, +2	0.1 M KHCO3	Н	8	-1.2	RHE	4.2	No
8	Cu-DBC	node	CuO ₅	+1, +2	0.1 M KHCO ₃	Н	16	-1.2	RHE	5	No
9	Cu-THQ	node	CuO ₄	+1, +2	1 M choline chloride + 1 M KOH	Н	0	-0.43	RHE	173	No
10	Cu ₃ (HHTP) ₂	node	CuO ₄	NR*	KHCO3	Н	0	-0.64	RHE	NR*	No
10	CoPc-Cu-O	node	CuO ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	17.1	No
10	CoPc-Cu-NH	node	CuN ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	11.6	No

Table S3: C₂₊ Product Faradaic Efficiencies for Cu MOF and Cu MOF Composites.

10	NiPc-Cu-O	node	CuO ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	7.3	Yes
10	NiPc-Cu-NH	node	CuN ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	6.1	No
10	Pc-Cu-O	node	CuO ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	7.5	Yes
10	Pc-Cu-NH	node	CuN ₄	+1, +2	KHCO3	Н	0	-0.74	RHE	8	No
10	Cu ₃ (HITP) ₂	node	CuN ₄	NR*	KHCO3	Н	0	-0.74	RHE	n/a	No
11	HKUST-1	cluster	Cu ₂ (COO) ₄	+2	1 M KOH	Flow	13	-1.08	RHE	NR*	Yes
11	HKUST-1 (thermally treated)	cluster	Cu ₂ (COO) ₄	+1, +2	1 M KOH	Flow	45	-1.07	RHE	262	Yes
12	PcCu-Cu-O	node	CuO ₄	+1, +2	0.1 M KHCO ₃	Н	50	-1.2	RHE	7.3	No
12	PcCo-Cu-O	node	CuO ₄	NR*	0.1 M KHCO3	Н	0	-1	RHE	NR*	No
12	Cu-HHTP	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	0	-1.2	RHE	NR*	No
13	HKUST-1	cluster	Cu ₂ (COO) ₄	0, +1, +2	0.01 M TBATFB/DMF	3EC^	51	-2.5	Ag/Ag ⁺	NR*	No
14	Cu ₂ O@Cu-MOF	cluster	Cu ₂ (COO) ₄	0, +1, +2	0.1 M KHCO ₃	Н	35.4	-1.31	RHE	7	Yes
14	Cu-MOF	cluster	Cu ₂ (COO) ₄	+1, +2	0.1 M KHCO ₃	Н	12.9	-1.71	RHE	n/a	Yes
15	PCZ-2	cluster	Cu ₂ (COO) ₄	0, +1, +2	0.1 M KHCO ₃	Н	0	-0.75	RHE	2.6	No
16	Cu-MOF-74	cluster	Cu-O-C rod	+1, +2	0.1 M KHCO ₃	Н	0	-1.8	SCE	4	No
17	CuO/Cu-MOF	cluster	Cu ₂ (COO) ₄	+2	0.1 M KHCO ₃	Н	50	-1.1	RHE	14	Yes
17	Cu-MOF	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	40	-1.1	RHE	12.7	No
17	2Cl-Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO3	Н	20	-1.1	RHE	10	No
17	2Br-Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	30	-1.1	RHE	10	No
17	20H-Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO ₃	Н	0	-1.1	RHE	NR*	No
17	2NH ₂ -Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO3	Н	3	-1.1	RHE	NR*	No
17	NH ₂ -Cu-BDC	cluster	Cu ₂ (COO) ₄	NR*	0.1 M KHCO3	Н	2	-1.1	RHE	NR*	No
18	PA-Cu-DBC-1	node	CuO ₅	+2	0.5 M KHCO ₃	Н	8	-1	RHE	36	No
18	PA-Cu-DBC-2	node	CuO ₅	+2	0.5 M KHCO ₃	Н	11	-1.1	RHE	36	No
18	Cu-DBC	node	CuO ₅	+2	0.5 M KHCO ₃	Н	2	-1	RHE	16	No

19	Cu ₂ (CuTCPP)	cluster	Cu ₂ (COO) ₄	+1, +2	CH ₃ CN/H ₂ O/EMIMBF ₄	Н	16.8	-1.55	Ag/Ag ⁺	5.1	Yes
20	H-CuTCPP@Cu(OH) ₂	cluster	Cu ₂ (COO) ₄	0, +1, +2	CH ₃ CN/H ₂ O/EMIMBF ₄	Н	26.1	-1.6	Ag/Ag ⁺	8	Yes
20	nH-CuTCPP@Cu(OH)2	cluster	Cu ₂ (COO) ₄	0, +1, +2	CH ₃ CN/H ₂ O/EMIMBF ₄	Н	19.8	-1.6	Ag/Ag ⁺	7	Yes
21	Cul	node	CuN ₂	+1, +2	0.1 M KHCO3	Н	0	-0.89	RHE	4.5	Yes
21	Cu2	node	CuN ₄	NR*	0.1 M KHCO ₃	Н	0	-0.96	RHE	4.5	No
21	Cu3	node	CuN ₄	NR*	0.1 M KHCO3	Н	0	-0.99	RHE	4.4	No
22	Cu ₂ O@Cu-HHTP	node	CuO ₄	+1, +2	0.1 M KCl + 0.1 M KHCO ₃	Н	3	-1.4	RHE	14.8	Yes
22	Cu-HHTP	node	CuO ₄	+2	0.1 M KCl + 0.1 M KHCO ₃	Н	0	-1.4	RHE	9.5	Yes
23	Cu-DBC	node	CuO ₅	+1, +2	1 M KOH	Flow	19	-0.7	RHE	65	No
23	Cu-HHTP	node	CuO ₄	NR*	1 M KOH	Flow	42	-0.8	RHE	105	No
24	Cu(111)@Cu-THQ	node	CuO ₄	0, +1, +2	0.1 M KHCO ₃	Н	44.2	-1.2	RHE	8.2	No
25	Cu-HITP	node	CuN ₄	NR*	0.1 M KHCO3	Н	43	-1.2	RHE	NR*	No
25	Cu-HITP@PDA	node	CuN ₄	+2	0.1 M KHCO ₃	Н	75.21	-1.2	RHE	4.76	No
25	Cu-HITP@PANI	node	CuN ₄	NR*	0.1 M KHCO ₃	Н	60.5	-1.2	RHE	NR*	No
25	Cu-HITP@PPV	node	CuN ₄	NR*	0.1 M KHCO ₃	Н	24	-1.2	RHE	NR*	No
26	PcCu-O ₈ -Cu	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	0	-1.1	RHE	16	No
26	PcZn-O ₈ -Cu	node	CuO ₄	NR*	0.1 M KHCO ₃	Н	0	-1.1	RHE	10	No
27	CPF	cluster	Cu ₂ (COO) ₄	+2	0.1 M KHCO ₃	Н	32	-1.1	RHE	2	Yes
28	CuBDC	cluster	Cu ₂ (COO) ₄	+2	0.1 M KI	Н	29	-1.4	RHE	NR*	No
28	Cu ₂ BDC	cluster	Cu ₂ (OH) ₂ (COO) ₄	+1, +2	0.1 M KI	Н	47	-1.3	RHE	NR*	No
29	Cu4 ^{II} -MFU-41	cluster	Cu ₄ Zn	+1, +2	0.5 M NaHCO ₃	Н	0	-1.2	RHE	10.65	No
30	MAF-2E	cluster	Cu ₂ N ₄	+1	0.1 M KHCO ₃	Н	51.2	-1.3	RHE	10.9	No
30	MAF-2ME	cluster	Cu ₂ N ₄	+1	0.1 M KHCO3	Н	47.7	-1.3	RHE	10.2	No
30	MAF-2P	cluster	Cu ₂ N ₄	+1	0.1 M KHCO3	Н	35.7	-1.2	RHE	7.5	No

[†] name used in original publication. See Supplementary Data File for alternative names. * not reported. ^ three-electrode single compartment cell

Tables S1 to S3 show the raw CO_2RR data used to generate Figures 14 and 17 in the main text. Note that to facilitate comparison, the tabulated potentials were converted from their reported values to the reversible hydrogen electrode using the following equations.

E_{RHE}

$$= E_{Ag/AgCl} + 0.196 V + 0.0591 V \times pH$$
(1)

$$= E_{Ag/Ag^+} + 0.503 \text{ V} + 0.0591 \text{ V} \times \text{pH}$$
(2)

$$= E_{SHE} + 0.0591 \text{ V} \times \text{pH}$$
(3)

$$= E_{SCE} + 0.241 V + 0.0591 V \times pH$$
(4)

Regarding (2), note that the Ag/Ag⁺ couple refers to the reference electrode comprised of non-aqueous 10 mM AgNO₃ in acetonitrile. The value of 0.503 V is obtained from Coetzee and Campion.³¹

Finally, the numbered points below correspond to the superscripts in the tables.

- ¹ If the secondary building unit features more than one metal atom, it is classified as cluster-based; otherwise, the secondary building unit is classified as node-based.
- ² The listed faradaic efficiencies are based on values reported in the text or data tables of the original publication, where available; otherwise, the listed faradaic efficiencies are extracted from graphs.
- ³ Based on geometric area. The listed current densities are based on values reported in the text or data tables of the original publication, where available; otherwise, the listed current densities are extracted from graphs.
- ⁴ Evidence of an in situ transformation is classified as:
 - observed differences in Cu MOF properties between ex situ characterizations (e.g., XPS, XRD, SEM) before and after reaction
 - observed differences in Cu MOF properties between operando/in situ and ex situ characterizations (e.g., XPS, XRD, SEM)
 - periods of unstable CO₂RR performance (e.g., faradaic efficiency, current density, voltage) in chronoamperometric or galvanostatic measurements

Note that the purpose of this entry is to illustrate the dynamic nature of Cu MOF properties under CO_2RR conditions. That is, an entry of "Yes" or "No" is not intended to indicate the stability of a given Cu MOF. For example, an entry of "Yes" may be due to XPS measurements which indicate an increase in the Cu(I)/Cu(II) ratio; in general, this may or may not indicate the formation of a Cu₂O phase. Conversely, a study without post-reaction characterization or chronoamperometric measurements would receive an entry of "No" despite the unaddressed possibility of electrochemical reconstruction.

Data Aggregation Methodology

In tabulating the number of unique Cu MOFs with >2e⁻ or C₂₊ product formation for Figures 14 and 17, we have excluded duplicate entries as follows. In the case of multiple reports of a Cu MOF with no explicit modifications to the Cu MOF itself, only one entry has been added to the total. Thus, the same Cu MOF under different reaction conditions was not considered as a unique instance of >2e⁻ or C₂₊ product formation by that Cu MOF. Additionally, we have excluded reports of Cu MOF composite systems wherein the as-synthesized catalyst consists of a copper, copper oxide, or copper hydroxide phase or a non-copper-based MOF material (e.g., Bi-based MOF CAU-17 or PDA-functionalized Cu-HITP). In addition to all the data for Tables S1, S2, and S3, the Supplementary Data File contains the following details for each Cu MOF included in the study:

- alternative names used to refer to identical Cu MOFs
- the ligand constituting the Cu MOF
- the copper coordination geometry (excluding solvent molecules)
- the atoms directly bonded to copper ("Cu linking atoms")
- the presence of other transition metals in the Cu MOF catalyst ("Other TMs")
- the conductive additives used in preparing the electrode (e.g., carbon nanotubes)
- the method by which the Cu MOF is applied to the electrode (e.g., spray coating)
- faradaic efficiencies for all CO₂RR products observed under the conditions of highest CO₂RR, >2e⁻, and C₂₊ product formation
- whether or not the reported potentials were iR corrected

References

- 1 J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castaño and A. Irabien, *ChemSusChem*, 2017, **10**, 1100–1109.
- J. Albo, M. Perfecto-Irigaray, G. Beobide and A. Irabien, J. CO₂ Util., 2019, 33, 157–165.
- 3 R. Chen, L. Cheng, J. Liu, Y. Wang, W. Ge, C. Xiao, H. Jiang, Y. Li and C. Li, *Small*, 2022, 2200720.
- 4 L. Z. Dong, Y. F. Lu, R. Wang, J. Zhou, Y. Zhang, L. Zhang, J. Liu, S. L. Li and Y. Q. Lan, *Nano Res.*, 2022, **15**, 10185–10193.
- 5 R. Hinogami, S. Yotsuhashi, M. Deguchi, Y. Zenitani, H. Hashiba and Y. Yamada, *ECS Electrochem. Lett.*, 2012, **1**, H17.
- 6 J. Liu, D. Yang, Y. Zhou, G. Zhang, G. Xing, Y. Liu, Y. Ma, O. Terasaki, S. Yang and L. Chen, *Angew. Chem. Int. Ed.*, 2021, **60**, 14473–14479.
- 7 Y. Liu, S. Li, L. Dai, J. Li, J. Lv, Z. Zhu, A. Yin, P. Li and B. Wang, *Angew. Chem. Int. Ed.*, 2021, **60**, 16409–16415.
- 8 Y.-Y. Liu, H.-L. Zhu, Z.-H. Zhao, N.-Y. Huang, P.-Q. Liao and X.-M. Chen, ACS Catal., 2022, 12, 2749– 2755.
- 9 L. Majidi, A. Ahmadiparidari, N. Shan, S. N. Misal, K. Kumar, Z. Huang, S. Rastegar, Z. Hemmat, X. Zou, P. Zapol, J. Cabana, L. A. Curtiss, A. Salehi-Khojin, L. Majidi, A. Ahmadiparidari, S. N. Misal, S. Rastegar, Z. Hemmat, A. Salehi-Khojin, N. Shan, P. Zapol, L. A. Curtiss, K. Kumar, J. Cabana, Z. Huang and X. Zou, *Adv. Mater.*, 2021, **33**, 2004393.
- 10 Z. Meng, J. Luo, W. Li and K. A. Mirica, J. Am. Chem. Soc., 2020, 142, 21656–21669.
- 11 D. H. Nam, O. S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani, C. T. Dinh, F. P. García De Arquer, Y. Wang, Z. Liang, A. H. Proppe, C. S. Tan, P. Todorović, O. Shekhah, C. M. Gabardo, J. W. Jo, J. Choi, M. J. Choi, S. W. Baek, J. Kim, D. Sinton, S. O. Kelley, M. Eddaoudi and E. H. Sargent, *J. Am. Chem. Soc.*, 2018, 140, 11378–11386.
- 12 X. F. Qiu, H. L. Zhu, J. R. Huang, P. Q. Liao and X. M. Chen, J. Am. Chem. Soc., 2021, 143, 7242–7246.
- R. Senthil Kumar, S. Senthil Kumar and M. Anbu Kulandainathan, *Electrochem. Commun.*, 2012, 25, 70–73.
- 14 X. Tan, C. Yu, C. Zhao, H. Huang, X. Yao, X. Han, W. Guo, S. Cui, H. Huang and J. Qiu, *ACS Appl. Mater. Interfaces*, 2019, **11**, 9904–9910.
- 15 T. Van Phuc, J. S. Chung and S. H. Hur, *Catalysts*, 2021, 11, 537.
- 16 T. Van Phuc, S. G. Kang, J. S. Chung and S. H. Hur, *Mater. Res. Bull.*, 2021, **138**, 111228.
- 17 L. Wang, X. Li, L. Hao, S. Hong, A. W. Robertson and Z. Sun, Chin. J. Catal., 2022, 43, 1049–1057.
- 18 S. Wei, X. Jiang, C. He, S. Wang, Q. Hu, X. Chai, X. Ren, H. Yang and C. He, J. Mater. Chem. A, 2022, 10, 6187–6192.
- 19 J. X. Wu, S. Z. Hou, X. Da Zhang, M. Xu, H. F. Yang, P. S. Cao and Z. Y. Gu, Chem. Sci., 2019, 10, 2199– 2205.
- 20 Y. H. Xiao, Y. X. Zhang, R. Zhai, Z. G. Gu and J. Zhang, Sci. China Mater., 2021, 65, 1269–1275.
- 21 T. Yan, P. Wang, Z.-H. Xu and W.-Y. Sun, ACS Appl. Mater. Interfaces, 2022, 14, 13645–13652.

- 22 J. D. Yi, R. Xie, Z. L. Xie, G. L. Chai, T. F. Liu, R. P. Chen, Y. B. Huang and R. Cao, *Angew. Chem. Int. Ed.*, 2020, **59**, 23641–23648.
- 23 Y. Zhang, L. Z. Dong, S. Li, X. Huang, J. N. Chang, J. H. Wang, J. Zhou, S. L. Li and Y. Q. Lan, *Nat. Commun.*, 2021, **12**, 1–9.
- 24 Z. H. Zhao, K. Zheng, N. Y. Huang, H. L. Zhu, J. R. Huang, P. Q. Liao and X. M. Chen, *Chem. Commun.*, 2021, 57, 12764–12767.
- 25 Z. H. Zhao, H. L. Zhu, J. R. Huang, P. Q. Liao and X. M. Chen, ACS Catal., 2022, 12, 7986–7993.
- 26 H. Zhong, M. Ghorbani-Asl, K. H. Ly, J. Zhang, J. Ge, M. Wang, Z. Liao, D. Makarov, E. Zschech, E. Brunner, I. M. Weidinger, J. Zhang, A. V. Krasheninnikov, S. Kaskel, R. Dong and X. Feng, *Nat. Commun.*, 2020, 11, 1–10.
- 27 Y. Zhou, S. Chen, S. Xi, Z. Wang, P. Deng, F. Yang, Y. Han, Y. Pang and B. Y. Xia, *Cell Rep. Phys. Sci.*, 2020, 1, 100182.
- 28 X. Zhou, J. Dong, Y. Zhu, L. Liu, Y. Jiao, H. Li, Y. Han, K. Davey, Q. Xu, Y. Zheng and S. Z. Qiao, *J. Am. Chem. Soc.*, 2021, **143**, 6681–6690.
- H. L. Zhu, J. R. Huang, X. W. Zhang, C. Wang, N. Y. Huang, P. Q. Liao and X. M. Chen, ACS Catal., 2021, 11, 11786–11792.
- 30 L. L. Zhuo, P. Chen, K. Zheng, X. W. Zhang, J. X. Wu, D. Y. Lin, S. Y. Liu, Z. S. Wang, J. Y. Liu, D. D. Zhou and J. P. Zhang, Angew. Chem. Int. Ed., 2022, 61, e202204967.
- 31 J. F. Coetzee and J. J. Campion, J. Am. Chem. Soc., 1967, 89, 2513–2517.