Supporting information

Critical issues for the deployment of plastic waste pyrolysis

Kinetic constant parameters (pre-exponential factor and activation energy) are usually obtained by fitting experimental results of thermogravimetric analysis (TGA) from isothermal and/or dynamic decomposition. During dynamic TGA, temperature is increased at a constant heating rate ($\beta = dT/dt$) and the following general form for the rate equation is used:

$$\frac{d\alpha}{dt} = \beta \cdot \frac{d\alpha}{dT} = k_0 \cdot exp\left(-\frac{E}{RT}\right) \cdot f(\alpha) \tag{1}$$

 $f(\alpha)$ is the so called "reaction model": the mathematical function accounting for the conversion dependence. The estimation of the sole activation energy could be done without any assumption of $f(\alpha)$ (isoconversional methods). Several methods (differential and integral) can be found in the open literature. Friedman method follows a differential approach, while other methods like Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunnose (KAS) and advanced isoconversional (AIC) are based on numerical integration. On the contrary by assuming the form of $f(\alpha)$ (reaction model method), the pre-exponential factor (for each conversion) can be determined using TGA experimental results. Table S1 reports the most common models used in reaction methods.

Reaction model	Model code	$f(\alpha)$
First order	F1	1 - α
Second order	F2	$(1-\alpha)^2$
Third order	F3	$(1-\alpha)^3$
One-dimensional diffusion	D1	$\left(\frac{1}{2}\right)\alpha^{-1}$
Two-dimensional diffusion	D2	$\left[-ln(1-\alpha)\right]^{-1}$
Three-dimensional diffusion	D3	$\frac{3}{2}(1-\alpha)^{\frac{2}{3}}\left(1-(1-\alpha)^{\frac{1}{3}}\right)^{-1}$
Ginstling-Brounshtein	D4	$\frac{3}{2}\left[\left(1-\alpha\right)^{-\frac{1}{3}}-1\right]$
Two-dimensional nucleation	A2	$2(1-\alpha)[-\ln(1-\alpha)]^{\frac{1}{2}}$
Three-dimensional nucleation	A3	$3(1-\alpha)[-\ln(1-\alpha)]^{\frac{2}{3}}$
Four-dimensional nucleation	A4	$4(1-\alpha)[-ln(1-\alpha)]^{\frac{3}{4}}$
One-dimension phase boundary	R1	1
Contracting sphere	R2	$2(1-\alpha)^{\frac{1}{2}}$
Contracting cylinder	R3	$3(1-\alpha)^{\frac{2}{3}}$
Power law	P2	$2\alpha^{\frac{1}{2}}$
Power law	P3	$3\alpha^{\frac{2}{3}}$
Power law	P4	$4\alpha^{\frac{3}{4}}$

Table S1. Main reaction models for solid materials decomposition.

Plastic	Method	E (kJ/mol)	Notes	Reference
LDPE	AIC, Criado	170-231		1
LDPE	Coats-Redfern, Criado	171	Reported E from Coats- Redfern	2
LDPE	Friedman, KAS, OFW, Coats-Redfern, Criado	214	Reported E from Coats- Redfern	3
HDPE	AIC, Criado	143-233		1
HDPE	Friedman, KAS, OFW, Coats-Redfern, Criado	248	Reported E from Coats- Redfern	3
PP	AIC	133-173		1
РР	Friedman, KAS, OFW, Coats-Redfern, Criado	187	Reported E from Coats- Redfern	3
PP	OFW	183		4
PS	KAS	193	Averaged value	5
PS	Coats-Redfern	151 - 199	Activation energy affected by the involved inert gas	6
PS	OFW	145		7
PS	OFW	169		4
DVC	Coats-Redfern, Criado	47 (First stage)		2
PVC	Coats-Redfern, Criado	119 (Second stage)		-
PVC	KAS, FWO, FR, Criado	152 (First stage)	Reported E is the averaged	8
	KAS, FWO, FR, Criado	294 (Second stage)	value from different methods	
PVC	OFW, Coats-Refern	141 (First stage)	Averaged values from OFW	9
PVC	OFW, Coats-Refern	235 (Second stage)		
PET	Friedman	193, 223	Two values: the first for conversion up to 80%.	10
PET	KAS	208	Reported E is averaged value	11
PET	KAS	198	Reported E is averaged value	5

Table S2. Results from kinetic investigation works on plastics thermal pyrolysis available in the open literature.

Plastic	Catalyst	Method	E (kJ/mol)	Notes	Reference
LDPE	Y-zeolite	Isoconversional	169		12
LDPE	Ni on Y-zeolite	first order power law	72		13
LDPE	HY	OFW	79	Conv. = 0.6	14
LDPE	MCM-41	OFW	167	Conv. = 0.6	14
UHMWP E	ZSM-23 (AZ- PYR)	OFW	74		15
HDPE	Y-zeolite	Isoconversional	87		12
HDPE	ZSM-5	First order power- law	60		16
HDPE	SAPO-11	OFW, AIC, Vyazovkin, Coats- Redfern	175	E from Coats- Redfern	17
HDPE	Ni on zeolite Y	first order power-law	69		13
PP	Y-zeolite	Isoconversional	113		12
PP	Al-MCM-41	Model-fitting method	129	First order model	18
РР	FCC	OFW	87		19
РР	HUSY	OFW	76		19
РР	ZSM-5	OFW	72		19
РР	Silicalite	OFW	143		19
РР	MOR	Kissinger	51		20
PP	BEA	Kissinger	59		20
PP	ZSM-5	Kissinger	62		20
PP	Bentonite	OFW	122		21
PP	Al-MCM-41	OFW	104		21
PP	NZ	OFW	116		21
РР	HZSM-5	OFW	122	Catalyst to PP ratio: 5/1	22
РР	Ga-HZSM-5	OFW	110	Catalyst to PP ratio: 5/1	22
PS	Ni _x Cu _{1-x} O	Coats-Redfern, Friedman, OFW, KAS.	121	E averaged from Coats- Redfern	23
PS	spent FCC	KAS	45		12
PS	Fe-K/Al ₂ O ₃	Kissinger	138		24
Mixed	FCC	Friedman	83, 247	1 st and 2 nd decomposition step	25
Mixed	Fe-ZSM-5	Friedman	83, 212	1 st and 2 nd decomposition step	25

Table S3. Results from kinetic investigation works on plastics catalytic pyrolysis available in the open literature.

References

- 1 P. Das and P. Tiwari, *Thermochim Acta*, 2017, **654**, 191–202.
- 2 F. Xu, B. Wang, D. Yang, J. Hao, Y. Qiao and Y. Tian, *Energy Convers Manag*, 2018, 171, 1106–1115.
- 3 A. Aboulkas, K. El harfi and A. El Bouadili, *Energy Convers Manag*, 2010, **51**, 1363–1369.
- 4 A. Aboulkas, K. El harfi, A. El bouadili, M. Nadifiyine, M. Benchanaa and A. Mokhlisse, *Fuel Processing Technology*, 2009, **90**, 722–728.
- 5 L. S. Diaz Silvarrey and A. N. Phan, Int J Hydrogen Energy, 2016, 41, 16352–16364.
- P. Kannan, J. J. Biernacki, D. P. Visco and W. Lambert, *J Anal Appl Pyrolysis*, 2009, 84, 139–144.
- 7 Y. Mo, L. Zhao, C. L. Chen, G. Y. A. Tan and J. Y. Wang, *J Therm Anal Calorim*, 2013, 111, 781–788.
- 8 Z. Wang, T. Xie, X. Ning, Y. Liu and J. Wang, *Waste Management*, 2019, 99, 146–153.
- 9 H. Liu, C. Wang, J. Zhang, W. Zhao and M. Fan, *Energy and Fuels*, 2020, **34**, 2385–2390.
- T. Larraín, M. Carrier and L. R. Radovic, *Journal of Analytical and Applied Pyrolysis*, 2017, 126, 346–356.
- R. Tuffi, S. D'Abramo, L. M. Cafiero, E. Trinca and S. Vecchio Ciprioti, *Express Polym Lett*, 2018, 12, 82–99.
- 12 S. R. Chandrasekaran, B. Kunwar, B. R. Moser, N. Rajagopalan and B. K. Sharma, *Energy and Fuels*, 2015, **29**, 6068–6077.
- A. Coelho, I. M. Fonseca, I. Matos, M. M. Marques, A. M. Botelho do Rego, M. A. N. D. A. Lemos and F. Lemos, *Appl Catal A Gen*, 2010, 374, 170–179.
- 14 X. Tian, Z. Zeng, Z. Liu, L. Dai, J. Xu, X. Yang, L. Yue, Y. Liu, R. Ruan and Y. Wang, J Clean Prod, DOI:10.1016/j.jclepro.2022.131989.
- 15 B. J. B. Silva, L. V. Sousa, L. R. A. Sarmento, S. L. Alencar, P. H. L. Quintela and A. O. S. Silva, *Appl Catal B*, 2020, 267, 118699.
- 16 A. Coelho, L. Costa, M. M. Marques, I. M. Fonseca, M. A. N. D. A. Lemos and F. Lemos, *Appl Catal A Gen*, 2012, **413–414**, 183–191.
- 17 R. Singhal, C. Singhal and S. Upadhyayula, *J Anal Appl Pyrolysis*, 2010, **89**, 313–317.
- 18 B. Saha, P. Chowdhury and A. K. Ghoshal, *Appl Catal B*, 2008, **83**, 265–276.
- 19 Y. H. Lin and M. H. Yang, *Thermochim Acta*, 2008, **470**, 52–59.
- 20 A. Durmuş, S. N. Koç, G. S. Pozan and A. Kaşgöz, *Appl Catal B*, 2005, **61**, 316–322.
- 21 Y. M. Kim, S. Pyo, H. Hakimian, K. S. Yoo, G. H. Rhee and Y. K. Park, *Sustainability* (*Switzerland*), DOI:10.3390/su132313386.

- S. Pyo, Y. M. Kim, Y. Park, S. B. Lee, K. S. Yoo, M. Ali Khan, B. H. Jeon, Y. Jun Choi, G. Hoon Rhee and Y. K. Park, *Journal of Industrial and Engineering Chemistry*, 2021, 103, 136–141.
- 23 J. Nisar, G. Ali, A. Shah, M. R. Shah, M. Iqbal, M. N. Ashiq and H. N. Bhatti, *Energy and Fuels*, 2019, **33**, 12666–12678.
- 24 J. S. Kim, W. Y. Lee, S. B. Lee, S. B. Kim and M. J. Choi, *Catal Today*, 2003, **87**, 59–68.
- 25 I. Kremer, T. Tomić, Z. Katančić, M. Erceg, S. Papuga, J. P. Vuković and D. R. Schneider, J Environ Manage, , DOI:10.1016/j.jenvman.2021.113145.