Supporting information

Enhanced Adsorption of Oxygen Species on c/h-In₂O₃ Z-scheme Heterophase Junctions for Oxygen-mediated Photocatalytic Hydrogen Production

Zhengxin Peng,^[a] Xiangbowen Du,^[b] Nan Lu,^[a,b] Jing Sui,^[a] Xiaofan Zhang,^[a] Renhong Li,^[b] and Xiaoqing Yan^{*[a]}

[a] Department of Chemistry, School of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.

[b] National Engineering Lab for Textile Fiber Materials and Processing Technology,
School of Materials Science & Engineering, Zhejiang Sci-Tech University,
Hangzhou, 310018, PR China.

*Corresponding Authors

E-mail: yanxiaoqing927@126.com (X.Q. Yan)

Table S1. Comparison of the photocatalytic hydrogen evolution activity over different heterophase junction photocatalysts under visible light irradiation.

Photocatalyst	Mass (mg)	Cocatalyst	Reactants and Concentration	Photocatalytic Activity (µmol h ⁻¹ g ⁻¹)	Ref
rh/c-In ₂ O ₃ (MOF)	100	none	15 vol% triethanolamine	2244	1
Phase junction TiO ₂	10	none	10 vol% CH ₃ OH	80	2
orthorhombic/hex agonal WO ₃	50	none	$Na_2S (0.35 M) + Na_2SO_3$ (0.25 M)	708	3
Anatase/Brookie TiO ₂	100	Pt (1.0 wt%)	10 vol% CH ₃ OH	3423	4
Anatase/Rutile TiO ₂	100	Pt (1.0 wt%)	10 vol% CH ₃ OH	1453	4
tri-/tri-s-tri C ₃ N ₄	50	Pt (3.0 wt%)	10 vol% triethanolamine	2880	5
hexagonal/g- C ₃ N ₄	30	Pt (10 wt%)	20 vol% triethanolamine	4000	6
c/h-In ₂ O ₃	20	none	3 M HCHO and 5 M NaOH	730	this work

Figure S1. XRD of the InOOH precursor.

Figure S2. SEM of the (a,b) $h-In_2O_3$ and (c,d) $c-In_2O_3$.

Figure S3. TEM of c/h-In₂O₃.

Figure S4. The time profiles of hydrogen production from $c/h-In_2O_3$ suspending in an aqueous solution containing 3 M HCHO and 5 M NaOH at 0.21 O₂ atm, under dark and light conditions.

Figure S5. The time profiles of hydrogen production from c/h-In₂O₃ suspending in an aqueous solution containing 5 M of NaOH and different concentrations of HCHO at 0.21 O₂ atm under visible-light irradiation ($\lambda > 420$ nm).

Figure S6. The time profiles of hydrogen production from c/h-In₂O₃ suspending in an aqueous solution containing 3 M of HCHO and different concentrations of NaOH at 0.21 O₂ atm under visible-light irradiation ($\lambda > 420$ nm).

Figure S7. (a) XRD and (b) SEM of $c/h-In_2O_3$ sample after 5 cycles of illumination.

Figure S8. Incident photon to converted electron spectra (IPCE) of $h-In_2O_3$, c/h-In_2O_3 and c-In_2O_3.

Figure S9. XPS valence band spectra of $h-In_2O_3$ and $c-In_2O_3$.

Figure S10. (a) TEM images of $c/h-In_2O_3$ after photoreduction deposition of Pt nanoparticles, (b) HRTEM image of $c/h-In_2O_3$ after photoreduction deposition of Pt nanoparticles.

References:

- L. Han, F. Jing, J. zhang, X. Z. Luo, Y. L. Zhong, K. Wang, S. H. Zang, D. H. Teng, Y. Liu, J. Chen, C. Yang and Y. T. Zhou, *Applied Catalysis B: Environmental*, 2021, 282, 119602.
- C. Qiu, J. Lin, J. Shen, D. Liu, Z. Zhang, H. Lin and X. Wang, Catalysis Science & Technology, 2020, 10, 3709-3719.
- W. Q. Zhao, J. W. Zou, S. Z. Qu, P. L. Qin, X. B. Chen, S. J. Ding, L. Ma and Q. Q. Wang, ACS Applied Materials & Interfaces, 2021, 13, 44440-44450.
- 4. P. Du, P. Niu, Y. Yang, R. Chen, L. C. Yin, F. Fan and G. Liu, *The Journal of Physical Chemistry Letters*, 2022, **13**, 4244-4250.
- Z. Zeng, H. Yu, X. Quan, S. Chen and S. Zhang, *Applied Catalysis B: Environmental*, 2018, 227, 153-160.
- Y. Li, J. He, X. Wang, J. Zhao, R. Liu, Y. Liu and F. Li, *Applied Surface Science*, 2021, 559, 149876.