Supporting information

Biocatalytic reduction of alkenes in micro-aqueous organic solvent catalysed by an immobilised ene reductase

Rocio Villa, Claudia Ferrer-Carbonell, and Caroline E. Paul*

Biocatalysis section, Department of Biotechnology, Delft University of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands

Contents

General information	2
TsOYE production and purification	2
Enzyme concentration and activity	3
Enzyme immobilisation	3
Biotransformations	3
Free enzyme	3
Immobilised enzyme	4
Control experiments	4
Scale-up	5
Immobilised enzyme recovery	5
Product analyses	5
GC chromatograms	7
References1	13

General information

Chemicals: NADPH and NADP⁺ were purchased from Prozomix. All other chemicals were purchased from Sigma–Aldrich, abcr GmbH or TCI Europe at the highest purity available and used as received. **Enzyme:** GDH-101 was obtained from Johnson Matthey (London, England), as a lyophilised powder with an activity of 20.5 U/mg.

Celite: Celite[®] R-632, R-633 and R-648 were received *via* Dr. Y. Guiavarc'h from Imerys (France) (Table S1). Celite[™] 545 was purchased from Thermo Scientific[™].

Celite	Form	Mean pore diameter (μm)	Surface area, m²/g	Total pore volume, cc/g	Volume fraction, 1.0-50 μ, cc/g	Water adsorption, % by weight, pellet method
R-632	Sphere (14/30)	7.0	2.0	1.19	1.09 (92.0%)	84
R-633	Sphere (30/50)	6.5	1.3	1.47	1.42 (96.2%)	240
R-648	Sphere (30/50)	0.14	46.0	1.18	0.39 (33.2%)	160

 Table S1. Physical properties of Celite carriers

Celite	Product type	Mean pore size (μm)	Permeability, D ²	Estimated water (%)	Wet density, DCF
545	Flux calcined	17.0	3.0	340	20.0

TsOYE production and purification

*Ts*OYE (from *Thermus scotoductus* SA-01, accession number B0JDW3) was recombinantly produced in *E. coli* BL21(DE3) cells with the plasmid pET-22b(+)-*tsoye*. A 100 mL pre-culture of LB medium containing 100 μ g mL⁻¹ of ampicillin was inoculated with a glycerol stock of *E. coli* BL21(DE3)-pET-22b(+)-*tsoye* and incubated overnight at 37 °C and 180 rpm. 500 mL of TB medium supplemented with 100 μ g mL⁻¹ of ampicillin in a 2 L shake flask was inoculated with the pre-culture (5% v/v) and incubated at 37 °C and 180 rpm until the OD₆₀₀ reached 0.6 (approximately 2 h 30 min), 0.1 mM of IPTG was added for induction, and the cell culture was incubated overnight at 30 °C and 180 rpm.

Cells were harvested by centrifugation at 17,500 × g for 30 min at 4 °C. The resulting cell pellet was washed and re-suspended in a 20 mM MOPS-NaOH buffer at pH 7.0 supplemented with a spatula tip of DNase I, MgCl₂, and one tablet of EDTA-free CompleteTM protease inhibitor. The cell pellet was re-suspended in buffer and lysed using a Multi-Shot Cell Disruption System (Constant Systems Ltd, Daventry, UK) over two cycles. Cell debris were separated from the crude extract by centrifugation at 17,500 × g for 30 min at 4 °C. The supernatant was filtered.

Heat purification was performed by incubating the supernatant in 50 mL Greiner tubes for 1 h 30 min in a water bath at 70 °C. Precipitated proteins were removed by centrifuging at $38,500 \times g$ for 30 min at 4 °C two times. A clear and bright yellow solution of *Ts*OYE was obtained, supplemented with flavin mononucleotide (FMN) and incubated on ice for 30 min. The protein solution was concentrated using an Amicon[®] Ultra-15 Centrifugal Filter Device (molecular cut-off 30 kDa) and washed with 20 mM MOPS-NaOH pH 7.0 buffer until the flow-through was colourless. The resulting heat-purified *Ts*OYE was flash frozen in liquid nitrogen and stored at -80 °C until later use.

Enzyme concentration and activity

Total protein concentration was measured with a Bradford assay using bovine serum albumin (BSA).¹ The purified *Ts*OYE stock solution used for immobilisation was determined to be 152 μ M.

Concentration of flavin-bound *Ts*OYE was determined by UV-Vis absorbance following standard protocol for flavoproteins (using FMN extinction coefficient at 446 nm ε_{446} = 12.2 mM⁻¹cm⁻¹),² with the following compounds and concentrations: 1 mL buffer 20 mM MOPS-NaOH pH 7.0; *Ts*OYE (amount to reach an absorbance between 0.1 and 0.2), and 20 µL sodium dodecyl sulfate (SDS, 0.2% w/v final, from a stock solution of 10% w/v in MilliQ). Enzyme purity was assessed by SDS-PAGE and estimated to be >90% pure.

The specific activity of *Ts*OYE for cyclohexenone was 9 U/mg, measured following the consumption of NADPH at 340 nm (ϵ = 6.22 mM⁻¹cm⁻¹) as described previously.^{3, 4} The assay mixtures contained final concentrations of 50 mM MOPS-NaOH buffer pH 7.0, 10 mM cyclohexenone, 0.2 mM NADPH, at 22.6 °C, 1 mL in volume, all components were thermostated prior to measurements.

Enzyme immobilisation

Enzyme immobilisation on celite was performed according to a previous protocol with slight modifications.⁵ In this work, 200 mg of Celite carrier were washed three times with buffer 50 mM MOPS-NaOH pH 7.0. Then, 500 μ L of the enzyme *Ts*OYE were added to each of the washed carrier. An aliquot of 70 μ L was taken at t = 0 h for reference. The enzyme-carrier mixture was slowly shaken for 5 h at 20 °C. After 5 h, each sample was centrifuged, the supernatant was removed, and the immobilised enzyme was frozen. Enzyme concentration before and after immobilisation was determined by UV-Vis absorbance as described above.²

Biotransformations

Biotransformations were performed with 1 mL reaction volume in 2 mL microcentrifuge tubes.

Free enzyme

For reactions with free *Ts*OYE (Figure 2, Table S2), the reactions were set up with the corresponding organic solvent, 1.4 μ M *Ts*OYE, 0.2 mmol NADPH, 10 U/mL *Bs*GDH, 20 mmol glucose, 10 mmol cyclohexenone, 1 mL in volume, at 30 °C and 900 rpm in an Eppendorf ThermoMixer C for 24 h. As a control, buffer saturated MTBE, using 50 mM MOPS-NaOH pH 7.0, was used in the reaction conditions described above.

For reaction with free *Ts*OYE and 2-methylcyclohexenone substrate **2a**, the reaction was set up with 50 mM MOPS-NaOH buffer pH 7.0, 2 μ M *Ts*OYE, 1 mM NADP⁺, 2 mg lyophilised GDH-101 (20.5 U/mg), 27.7 mM glucose, 10 mM 2-methylcyclohexenone, 1 mL volume, at 30 °C and 900 rpm in an Eppendorf Thermomixer C for 24 h, obtaining >99.9% conversion and 85.5% *ee* (see Figure S13).

Table S2. Conversions for the reduction of cyclohexenone **1a** to cyclohexanone **3a** catalysed by free *Ts*OYE in organic solvents.^{*a*}

Reaction media (91.7% v/v)	Water (% v/v)	Conv. 1a to 1b (%)
Toluene	8.3	85.6 ± 0.6
EtOAc	8.3	86.8 ± 1.8
MTBE	8.3	>99.9
Buffer saturated MTBE	8.3	>99.9
Heptane	8.3	>99.9

^{*a*} Conditions: 10 mmol cyclohexenone, 10 U/mL *Bs*GDH, 20 mmol glucose, 0.2 mmol NADPH, 1.4 μM *Ts*OYE, shaken at 30 °C and 900 rpm (Eppendorf ThermoMixer C) for 24 h. Buffer: 50 mM MOPS-NaOH pH 7.0.

Immobilised enzyme

For reactions with 15 mg of immobilised *Ts*OYE on Celite 545 (**Table S3** entries 1-3), the reactions were set up with the corresponding organic solvent, 0.2 mmol NADPH, 10 U *Bs*GDH, anhydrous glucose, 10 mmol cyclohexenone **1a**, 1 mL in volume, at 30 °C with the specified conditions shown in **Table S3**.

For reactions with immobilised *Ts*OYE on Celite 545, R-632, R-633, and R-648, the reactions were set up with the corresponding organic solvent, hydrated salt pairs ($Na_2HPO_4 \cdot 12H_2O/Na_2HPO_3 \cdot 5H_2O$, 1:1 w/w), the specified amount of $NADP^+$, 2 mg GDH-101 (20.5 U/mg), anhydrous glucose, substrate, 1 mL in volume, at 30 °C with the specified conditions shown in **Table S3**.

As a control (**Table S3** entry 4), buffer saturated MTBE (50 mM MOPS-NaOH pH 7.0) was used in the reaction conditions described with: 10 mmol cyclohexenone, 1 mmol NADP⁺, 27.7 mmol glucose, 2 mg GDH-101 and 15 mg immobilised *Ts*OYE on Celite R-633.

 Table S3. Reaction conditions for cyclohexenone 1a or 2-methyl-N-phenylmaleimide 3a reduction catalysed by immobilised

 TsOYE on Celite in organic solvent^a

		-									
Entry	Organic	Cofactor	[Cofactor]	[Glucose]	Salt pairs	Buffer	Celite	Celite TsOYE	Time	Conv (%)	aa (%)
Liitiy	solvent	Colactor	(mM)	(mmol)	(mg)	(% v/v)	carrier	amount (mg)	(h)	COIIV. (70)	22 (70)
1 ^b	-	NADPH	0.2	20	-	100	545	15	24	>99.9	
2 ^b	EtOAc	NADPH	0.2	20	-	7.3	545	15	24	>99.9	-
3 ^b	MTBE	NADPH	0.2	20	-	7.3	545	15	24	>99.9	-
4 ^b	MTBE	NADP ⁺	1	27.7	25	1	545	50	8	91.0 ± 1.4	-
5 ^b	MTBE	NADP ⁺	1	27.7	25	1	R-633	40	6	80.9 ± 0.1	-
6 ^b	MTBE	NADP ⁺	1	27.7	25	1	R-633	40	24	98.7 ± 0.4	-
7 ^b	Limonene	NADP ⁺	1	27.7	25	1	R-633	40	24	94.5 ± 4.9	-
8 ^b	MTBE	NADP ⁺	1	27.7	25	1	R-632	40	24	98.8 ± 0.3	-
9°	MTBE	NADP ⁺	1	27.7	25	4	R-633	40	24	71.7 ± 6.6	>99.9
10 ^{c,d}	MTBE	NADP ⁺	1	27.7	25	4	R-633	40	24	>99.9	>99.9
11 ^c	MTBE	NADP ⁺	1	27.7	-	7	R-633	50	6	77.5 ± 3.5	>99.9

^a Conditions: *Ts*OYE immobilised on Celite, 2 mg GDH-101 (20.5 U/mg), anhydrous glucose, cofactor, hydrated salt Na₂HPO₄·12H₂O/ Na₂HPO₃·5H₂O (1:1 w/w), buffer (50 mM MOPS-NaOH pH 7.0), MTBE, substrate added with 1% v/v DMSO, 1 mL volume, 24 h at 30 °C, 900 rpm in an Eppendorf Thermomixer C; ^b 10 mM cyclohexenone **1a**; ^c 10 mM 2-methyl-*N*-phenylmaleimide **3a**; ^d Shaking with New Brunswick Scientific Excella E24 Incubator Shaker Series, 180 rpm.

Control experiments

Control experiments (**Table S4**) were performed with cyclohexenone as substrate in absence of enzymes. Tubes were shaken for 6, 8 or 24 h at 30 °C and 900 rpm in an Eppendorf ThermoMixer C. Aliquots (100 μ L) were taken from the organic supernatant, diluted in 50 μ L of EtOAc supplemented with 5 mM of tridecane as internal standard, dried with anhydrous MgSO₄, centrifuged, and transferred into GC vials for analysis.

[GDH-101] (U/mg)	Celite carrier	Celite <i>Ts</i> OYE amount (mg)	Conv. (%)
-	-	-	<0.1
20.5	-	-	<0.1
20.5	545	20	<0.1
20.5	R-632	20	<0.1
20.5	R-633	20	<0.1
20.5	R-648	20	<0.1

Table 34. Reaction conditions for control reactions without 75012 in Wilber.
--

^{*a*} Conditions: 10 mmol cyclohexenone, 27.7 mmol glucose, 1 mmol NADP⁺, shaken at 30 °C and 900 rpm (Eppendorf ThermoMixer C) for 6 h.

To determine whether GDH-101 could reduce either the substrate cyclohexenone or product cyclohexanone under the same reaction conditions, control experiments were performed:

1) 10 mmol of cyclohexenone, 1 mmol NADP⁺, 27.7 mmol glucose and 2 mg GDH-101 in MTBE. No conversion was observed.

2) 10 mmol of cyclohexanone, 1 mmol NADP⁺, 27.7 mmol glucose and 2 mg GDH-101 in MTBE. 1% of cyclohexanol was observed.

Scale-up

Scale up reactions with 50 mmol 2-methyl-*N*-phenylmaleimide were set up with MTBE solvent, 9.3 mg substrate, 50 mg immobilised *Ts*OYE on Celite R-633 and R-648, 2 mmol of NADP⁺, 2 mg GDH-101 and 60 mmol of glucose, 1 mL in volume. The vials were shaken for 24 h at 30 °C and 180 rpm on an incubator shaker (New Brunswick Scientific Excella E24 Incubator Shaker Series). Aliquots (100 μ L) were taken from the organic supernatant, diluted in 50 μ L of EtOAc supplemented with 5 mM of tridecane as internal standard, dried with anhydrous MgSO₄, centrifuged, and transferred into GC vials for analysis.

For **Table 2** entries 19 and 20, the pure product was separated from the organic solvent by evaporation of the solvent and the solid product was obtained in 91% isolated yield in both cases, and analysed by NMR in DMSO- d_6 (**Figures S17** and **S18** for the R-633-*Ts*OYE reaction). Spectra are in agreement with literature.⁶

Immobilised enzyme recovery

Enzyme reusability was determined through several cycles of cyclohexanone synthesis. The reaction mixture contained: 10 mmol cyclohexenone, 1 mmol NADP⁺, 27.7 mmol solid anhydrous glucose, 2 mg GDH-101, 25 mg of salt pairs (Na₂HPO₄·12H₂O/Na₂HPO₃·5H₂O, 1:1 w/w), 50 mg of immobilised *Ts*OYE on Celite R-633 or Celite 545, and 0.98 mL MTBE. The reaction mixture was incubated and shaken at 900 rpm and 30 °C for 24 h. At the end of the reaction, the liquid mixture was separated from the immobilised enzyme by centrifugation and a new reaction mixture was prepared for the next operational cycle.

Product analyses

Gas chromatography analyses were performed on a GC-2010-Plus apparatus (Shimadzu Europe, Germany) equipped with a flame ionization detector (FID) and a CP-Sil 8 CB (50 m × 0.53 mm × 1.0 μ m). The substrate and product were analysed under the following conditions: N₂ carrier gas at 20 mL/min;

injector temperature at 340 °C; oven program: 80 °C for 3 min; 20 °C/min to 340 °C for 1 min; detector temperature at 360 °C.

Peak retention times (min) were as follows: cyclohexanone 3.07; cyclohexenone 3.56; tridecane 7.30; 2-methyl-*N*-phenylmaleimide 9.46; 2-methyl-*N*-phenylsuccimide 9.82.

For the analysis of (*R*)-2-methylcyclohexanone **2b**, the column CP-Chirasil-DEX CB (25 m × 0.32 mm × 0.25 μ m) was used. The substrate and the product were analysed under the following conditions: N₂ carrier gas at 30 mL/min; injector temperature at 250 °C; oven program: 70 °C for 2 min; 5 °C/min to 80 °C for 3 min; 5 °C/min to 90 °C for 3 min; 5 °C/min to 100 °C for 2 min; 10 °C/min to 220 °C for 1 min; detector temperature at 275 °C.

Peak retention times (min) were as follows: 2-methylcyclohexenone 12.5; (*R*)-2-methylcyclohexanone 11.3; (*S*)-2-methylcyclohexanone 11.1.

Please note that the commercially available substrate 2-methylcyclohexenone (CAS 1121-18-2) obtained from Sigma-Aldrich (771368) is of \geq 90% purity only and contains ~5% of the isomer 6-methylcyclohexenone (GC retention time 12.6 min), which is accepted as a substrate by *Ts*OYE and thus eventually produces a 5% racemic mixture of 2-methylcyclohexanone, leading to 2.5% of the undesired (*S*)-2-methylcyclohexanone.

For the analysis of (*R*)-2-methyl-*N*-phenylsuccinimide **3b**, the column Hydrodex β -TBDAc (50 m × 0.25 mm × 0.25 µm) was used. The substrate and the product were analysed under the following conditions: N₂ carrier gas at 30 mL/min; injector temperature at 250 °C; oven program: 70 °C for 3 min; 5 °C/min to 90 °C for 3 min; 10 °C/min to 180 °C for 3 min; 5 °C/min to 190 °C for 8 min; 5 °C/min to 200 °C for 8 min; 10 °C/min to 220 °C for 2 min; detector temperature at 260 °C.

Peak retention times (min) were as follows: tridecane 17.6; 2-methyl-*N*-phenylmaleimide 33.1; (*R*)-2-methyl-*N*-phenylsuccimide 37.6. The (*R*)-configuration was assumed based on literature with the same enzyme and product.^{4,7}

GC chromatograms

GC chromatograms obtained on the column CP-Sil 8 CB (50 m \times 0.53 mm \times 1.0 μ m):

Figure S1. GC chromatogram of cyclohexenone 1a standard with DMSO and tridecane.

Figure S2. GC chromatogram of cyclohexanone 1b standard with DMSO and tridecane.

Figure S3. GC chromatogram of cyclohexenone **1a** reduction catalysed by free *Ts*OYE in buffer.

Figure S4. GC chromatogram of cyclohexenone 1a reduction catalysed by TsOYE on Celite 545.

Figure S5. GC chromatogram of cyclohexenone 1a reduction catalysed by TsOYE on Celite R-632 (Table 2 entry 3).

Figure S6. GC chromatogram of cyclohexenone 1a reduction catalysed by TsOYE on Celite R-633 (Table 2 entry 4).

Figure S7. GC chromatogram of cyclohexenone 1a reduction catalysed by TsOYE on Celite R-648 (Table 2 entry 5).

Chiral GC chromatograms obtained on the column CP-Chirasil-DEX CB ($25 \text{ m} \times 0.32 \text{ mm} \times 0.25 \mu \text{m}$):

Figure S8. GC chromatogram of 2-methylcyclohexenone 2a standard.

Figure S9. GC chromatogram of racemic 2-methylcyclohexanone 2b standard.

Figure S10. GC chromatogram of 2-methylcyclohexenone 2a reduction catalysed by TsOYE on Celite 545 (Table 2, entry 11).

Figure S11. GC chromatogram of 2-methylcyclohexenone 2a reduction catalysed by TsOYE on Celite 545, 2% v/v buffer content (Table 2, entry 12).

Figure S12. GC chromatogram of 2-methylcyclohexenone reduction catalysed by TsOYE on Celite 545 (Table 2, entry 13).

Figure S13. GC chromatogram of 2-methylcyclohexenone reduction catalysed by free *Ts*OYE in 50 mM MOPS-NaOH pH 7.0 buffer.

GC chromatograms obtained on the column Hydrodex β -TBDAc (50 m × 0.25 mm × 0.25 μ m):

Figure S14. GC chromatogram of 2-methyl-*N*-phenylmaleimide **3a** standard with DMSO and tridecane. Note impurity peaks at 11.9 and 14.4 min are from the GC column itself.

Figure S15. GC chromatogram of 2-methyl-*N*-phenylmaleimide **3a** reduction to 2-methyl-*N*-phenylsuccinimide **3b** catalysed by *Ts*OYE on Celite R-633 (Table 2 entry 19). Note impurity peaks at 11.9 and 14.4 min are from the GC column (see **Figure S14**).

Figure S16. GC chromatogram of 2-methyl-*N*-phenylmaleimide **3a** reduction to 2-methyl-*N*-phenylsuccinimide **3b** catalysed by *Ts*OYE on Celite R-648 (Table 2 entry 20). Note impurity peaks at 11.9 and 14.4 min are from the GC column (see **Figure S14**).

Figure S17. ¹H-NMR spectrum (400 MHz, DMSO- d_6), δ (ppm): 7.49-7.45 (m, 2H), 7.41-7.37 (m, 1H), 7.27-7.25 (m, 2H), 3.08-2.95 (m, 2H), 2.46-2.45 (m, 1H), 1.29-1.27 (d, 3H). Spectra are in accordance with literature.⁶

Figure S18. ¹³C-NMR spectrum (100 MHz, DMSO-*d*₆), δ (ppm): 179.9, 175.9, 132.7, 128.8, 128.1, 127.1, 36.2, 34.5, 15.8.

References

- 1 M. M. Bradford, Anal. Biochem., 1976, 72, 248-254.
- 2 A. Aliverti, B. Curti and M. A. Vanoni, in *Flavoprotein Protocols*, eds. S. K. Chapman and G. A. Reid, Humana Press, Totowa, NJ, 1999, pp. 9-23.
- 3 A. Riedel, M. Mehnert, C. E. Paul, A. H. Westphal, W. J. H. van Berkel and D. Tischler, *Front. Microbiol.*, 2015, **6**, 1073.
- 4 A. Scholtissek, S. R. Ullrich, M. Muhling, M. Schlomann, C. E. Paul and D. Tischler, *Appl. Microbiol. Biotechnol.*, 2017, **101**, 609-619.
- 5 J. Coloma, L. Teeuwisse, M. Afendi, P.-L. Hagedoorn and U. Hanefeld, *Catalysts*, 2022, **12**, 161.
- 6 T. Hirata, A. Takarada, M. E. F. Hegazy, Y. Sato, A. Matsushima, Y. Kondo, A. Matsuki and H. Hamada, *J. Mol. Catal. B: Enzym.*, 2005, **32**, 131-134.
- 7 C. E. Paul, S. Gargiulo, D. J. Opperman, I. Lavandera, V. Gotor-Fernández, V. Gotor, A. Taglieber, I. W. C. E. Arends and F. Hollmann, *Org. Lett.*, 2013, **15**, 180-183.