Supplementary Material

Insights into Pt-CN Species on an Alumina-supported Platinum Catalyst as Active Intermediates or Inhibitors for Low-temperature Hydrogen Cyanide Synthesis from Methane and Nitric Oxide
Atsushi Takagaki,*a Kyoko K. Bando,*b Tatsuya Yamasaki,* Junichi Murakami,b Nobuya Suganuma,d I. Tyrone Ghammadon,d Tetsuya Kodaira,c Tatsumi Ishihara,c,f and Tetsuya Shishido*dg

a Division of Materials and Chemical Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan.
b Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.
c Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
d Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan.
e Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.
f International Institute for Carbon-Neutral Energy Research (WPI-FCNER), Kyushu University, 711 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
g Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan.

E-mail: takagaki-atsushi-gw@ynu.ac.jp, k.k.bando@aist.go.jp, shishido-tetsuya@tmu.ac.jp
Figure S1. XRD pattern (a) and TEM image (b) of 5wt%Pt/Al$_2$O$_3$.

Figure S2. Methane conversion and product yield (C-based) as a function of reaction temperature for the reaction of methane with nitric oxide over Pt/Al$_2$O$_3$ catalyst. Reaction conditions: 5wt% Pt/Al$_2$O$_3$ (100 mg), CH$_4$: NO: He = 13.4: 1.8: 84.8 (total flow rate: 100 mL min$^{-1}$), and 0.1 MPa.