Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Insights into Pt-CN Species on an Alumina-supported Platinum Catalyst as Active Intermediates or Inhibitors for Low-temperature Hydrogen Cyanide Synthesis from Methane and Nitric Oxide

Atsushi Takagaki,*^a Kyoko K. Bando,*^b Tatsuya Yamasaki,^c Junichi Murakami,^b Nobuya Suganuma,^d I. Tyrone Ghampson,^d Tetsuya Kodaira,^e Tatsumi Ishihara,^{c,f} and Tetsuya Shishido*^{d,g}

^a Division of Materials and Chemical Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan.

^b Nanomaterials Research Institute, National Institute of Advanced Industrial Science and

Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.

^c Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

^d Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan. ^e Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan.

^f International Institute for Carbon-Neutral Energy Research (WPI-I²CNER), Kyushu University, 711 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

^g Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan.

E-mail: takagaki-atsushi-gw@ynu.ac.jp, k.k.bando@aist.go.jp, shishido-tetsuya@tmu.ac.jp

Figure S1. XRD pattern (a) and TEM image (b) of 5wt%Pt/Al₂O₃.

Figure S2. Methane conversion and product yield (C-based) as a function of reaction temperature for the reaction of methane with nitric oxide over Pt/Al_2O_3 catalyst. Reaction conditions: $5wt\% Pt/Al_2O_3$ (100 mg), CH₄: NO: He = 13.4: 1.8: 84.8 (total flow rate: 100 mL min⁻¹), and 0.1 MPa.