Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Electronic supplementary information (ESI)

for

Co-activation of methane and nitrogen to acetonitrile over MoC_x/Al₂O₃ catalysts

Korawich Trangwachirachai,^a I-Ting Kao,^a Wei-Hsiang Huang,^b Chi-Liang Chen,^b and Yu-Chuan Lin^{a,*}

^{*a*} Department of Chemical Engineering, National Cheng Kung University, 1 University Rd., Tainan 70101, Taiwan

^b National Synchrotron Radiation Research Center, 101 Hsin-Ann Rd, Hsinchu 30076, Taiwan

E-mail: <u>yclin768@mail.ncku.edu.tw</u>

Derivation of the rate equation according to the LHHW formalism of methane conversion to ACN

Plausible reactions of CH₄ and N₂ co-activation to form ACN:

$$s_1 \qquad N_2 + 2s \leftrightarrow 2N \cdot s \tag{eq. 1}$$

$$s_2 \qquad 2CH_4 + 2s \leftrightarrow 2CH \cdot s + 3H_2$$
 (eq. 2)

$$s_3 \qquad 2CH \cdot s \leftrightarrow C_2H_2 \cdot s + s$$
 (eq. 3)

$$s_4 \qquad 2C_2H_2 \cdot s + H_2 \leftrightarrow 2C_2H_3 \cdot s \qquad (eq. 4)$$

$$s_5 \qquad C_2 H_3 \cdot s + N \cdot s \leftrightarrow C_2 H_3 N \cdot s + s \qquad (eq. 5)$$

$$s_6 \qquad C_2H_3N \cdot s \leftrightarrow C_2H_3N + s \qquad (eq. 6)$$

The aforementioned reactions can be lumped into four steps

$$s_1$$
, N_2 adsorption $N_2 + 2s \stackrel{K_{ad,1}}{\longleftrightarrow} 2N \cdot s$ (eq. 7)

 s_2 ' CH₄ adsorption $2CH_4 + s \stackrel{K_{ad,2}}{\longleftrightarrow} C_2H_2 \cdot s + 3H_2$ (eq. 8)

s₃' surface reaction
$$2C_2H_2 \cdot s + 2N \cdot s + H_2 \xleftarrow{K_{surf}} 2C_2H_3N \cdot s + 2s$$
 (eq. 9)

$$s_4$$
' ACN desorption $C_2H_3N \cdot s \stackrel{K_{de}}{\leftrightarrow} C_2H_3N + s$ (eq. 10)

Since ACN desorption is rapid, the equilibrium constant (K_{de}) of step s_4 ' is assumed to be very large. Thus, the terms containing K_{de} in the denominator are negligibly small.

I. Assuming N_2 adsorption step (s_1) is rate-limiting

The rate of the step of N₂ adsorption should be close to the rate of the overall reaction:

$$r = k_{ad,1} P_{N_2} (1 - \Sigma \theta_i)^2$$
 (eq. 11)

Then, CH₄ adsorptions (eq. 8), surface reaction (eq. 9), and ACN desorption (eq. 10) should attain the equilibrium, thereby yielding:

$$K_{ad,2} = \frac{\theta_{C_2H_2} P_{H_2}^3}{P_{CH_4}^2 (1 - \Sigma \theta_i)}$$
(eq. 12)

$$K_{surf} = \frac{\theta_{C_2H_3N}^2 (1 - \Sigma \theta_i)^2}{\theta_{C_2H_2}^2 \theta_N^2 P_{H_2}}$$
(eq. 13)

$$K_{de} = \frac{P_{C_2H_3N}(1-\Sigma\theta_i)}{\theta_{C_2H_3N}}$$
(eq. 14)

Rearranging eqs. 12, 13, and 14, the expressions of θ_N , θ_{C2H2} , and θ_{C2H3N} can be obtained.

$$\theta_N = K_{ad,2}^{-1} K_{surf}^{0.5} K_{de}^{-1} P_{H_2}^{3.5} P_{CH_4}^{-2} P_{C_2H_3N}^{-1} (1 - \Sigma \theta_i)$$
(eq. 15)

$$\theta_{C_2H_2} = K_{ad,2} P_{H_2}^{-3} P_{CH_4}^2 (1 - \Sigma \theta_i)$$
(eq. 16)

$$\theta_{C_2H_3N} = K_{de}^{-1} P_{C_2H_3N} (1 - \Sigma \theta_i)$$
(eq. 17)

Accordingly, the sum of the coverages of adsorbed species can be expressed as:

$$\Sigma \theta_{i} = \frac{K_{ad,2} P_{H_{2}}^{-3} P_{CH_{4}}^{2} + K_{ad,2}^{-1} K_{3}^{0.5} K_{de}^{-1} P_{H_{2}}^{3.5} P_{CH_{4}}^{-2} P_{C_{2}H_{3}N} + K_{de}^{-1} P_{C_{2}H_{3}N}}{1 + K_{ad,2} P_{H_{2}}^{-3} P_{CH_{4}}^{-1} + K_{ad,2}^{0.5} K_{surf}^{-1} F_{H_{2}}^{3.5} P_{CH_{4}}^{-2} P_{C_{2}H_{3}N} + K_{de}^{-1} P_{C_{2}H_{3}N}}$$
(eq. 18)

Since K_{de} is assumed to be very large, the sum of the coverages of adsorbed species can be simplified as:

$$\Sigma \theta_i = \frac{K_{ad,2} P_{H_2}^{-3} P_{CH_4}^2}{1 + K_{ad,2} P_{H_2}^{-3} P_{CH_4}^2} \tag{eq. 19}$$

By taking eq. 19 into eq. 11, the expression of the overall rate by assuming N_2 adsorption is rate-limiting can be obtained as:

$$r = k_{ad,1} P_{N_2} \left(\frac{1}{1 + K_{ad,2} P_{H_2}^{-3} P_{CH_4}^2}\right)^2$$
(eq. 20)

II. Assuming CH4 adsorption step (s2') is rate-limiting

The rate of the step of CH₄ adsorption should be close to the rate of the overall reaction:

$$r = k_{ad,2} P_{CH_4}^2 (1 - \Sigma \theta_i)$$
 (eq. 21)

Then, N_2 adsorptions (eq. 7), surface reaction (eq. 9), and ACN desorption (eq. 10) should attain the equilibrium, thereby yielding:

$$K_{ad,1} = \frac{\theta_N^2}{P_{N_2}(1 - \Sigma \theta_i)^2}$$
(eq. 22)

$$K_{surf} = \frac{\theta_{C_2H_3N}^2 (1 - \Sigma \theta_i)^2}{\theta_{C_2H_2}^2 \theta_N^2 P_{H_2}}$$
(eq. 23)

$$K_{de} = \frac{P_{C_2H_3N}(1-\Sigma\theta_i)}{\theta_{C_2H_3N}}$$
(eq. 24)

By rearranging eqs. 22, 23, and 24, the expressions of θ_N , θ_{C2H2} , and θ_{C2H3N} can be obtained.

$$\theta_N = K_{ad,1}^{0.5} P_{N_2}^{0.5} (1 - \Sigma \theta_i)$$
 (eq. 25)

$$\theta_{C_2H_2} = K_{ad,1}^{-0.5} K_{surf}^{-0.5} K_{de}^{-1} P_{N_2}^{-0.5} P_{H_2}^{0.5} P_{C_2H_3N} (1 - \Sigma \theta_i)$$
(eq. 26)

$$\theta_{C_2H_3N} = K_{de}^{-1} P_{C_2H_3N} (1 - \Sigma \theta_i)$$
(eq. 27)

Accordingly, the sum of the coverages of adsorbed species can be expressed as:

$$\Sigma \theta_{i} = \frac{K_{ad,1}^{0.5} P_{N_{2}}^{0.5} + K_{ad,1}^{-0.5} K_{surf}^{-0.5} K_{de}^{-1} P_{N_{2}}^{-0.5} P_{H_{2}}^{0.5} P_{C_{2}H_{3}N} + K_{de}^{-1} P_{C_{2}H_{3}N}}{1 + K_{ad,1}^{0.5} P_{N_{2}}^{0.5} + K_{ad,1}^{-0.5} K_{surf}^{-0.5} K_{de}^{-1} P_{N_{2}}^{-0.5} P_{H_{2}}^{0.5} P_{C_{2}H_{3}N} + K_{de}^{-1} P_{C_{2}H_{3}N}}$$
(eq. 28)

Since K_{de} is assumed to be very large, the sum of the coverages of adsorbed species can be simplified as:

$$\Sigma \theta_i = \frac{K_{ad,1}^{0.5} P_{N_2}^{0.5}}{1 + K_{ad,1}^{0.5} P_{N_2}^{0.5}} \tag{eq. 29}$$

By taking eq. 29 into eq. 21, the expression of the overall rate by assuming CH₄ adsorption is rate-limiting can be obtained as:

$$r = k_{ad,2} P_{CH_4}^2 \frac{1}{1 + K_{ad,1}^{0.5} P_{N_2}^{0.5}}$$
(eq. 30)

III. Assuming the surface reaction step (s_3') is rate-limiting

The rate of the step of surface reaction should be close to the rate of the overall reaction:

$$r = k_{surf} \theta_{C_2 H_2}^2 \theta_N^2 P_{H_2} \tag{eq. 31}$$

Then, N₂ adsorptions (eq. 7), CH₄ adsorption (eq. 8), and ACN desorption (eq. 10) should attain the equilibrium, thereby yielding:

$$K_{ad,1} = \frac{\theta_N^2}{P_{N_2}(1 - \Sigma \theta_i)^2}$$
(eq. 32)

$$K_{ad,2} = \frac{\theta_{C_2H_2} P_{H_2}^3}{P_{CH_4}^2 (1 - \Sigma \theta_i)}$$
(eq. 33)

$$K_{de} = \frac{P_{C_2H_3N}(1-\Sigma\theta_i)}{\theta_{C_2H_3N}}$$
(eq. 34)

By rearranging eqs. 32, 33, and 34, the expressions of θ_N , θ_{C2H2} , and θ_{C2H3N} can be obtained.

$$\theta_N = K_{ad,1}^{0.5} P_{N_2}^{0.5} (1 - \Sigma \theta_i) \tag{eq. 35}$$

$$\theta_{C_2H_2} = K_{ad,2} P_{CH_4}^2 P_{H_2}^{-3} (1 - \Sigma \theta_i)$$
(eq. 36)

$$\theta_{C_2H_3N} = K_{de}^{-1} P_{C_2H_3N} (1 - \Sigma \theta_i)$$
 (eq. 37)

Accordingly, the sum of the coverages of adsorbed species can be expressed as:

$$\Sigma \theta_i = \frac{K_{ad,1}^{0.5} P_{N_2}^{0.5} + K_{ad,2} P_{CH_4}^2 P_{H_2}^{-3} + K_{de}^{-1} P_{C_2H_3N}}{1 + K_{ad,1}^{0.5} P_{N_2}^{0.5} + K_{ad,2} P_{CH_4}^2 P_{H_2}^{-3} + K_{de}^{-1} P_{C_2H_3N}}$$
(eq. 38)

Since K_{de} is assumed to be very large, the sum of the coverages of adsorbed species can be simplified as

$$\Sigma \theta_i = \frac{K_{ad,1}^{0.5} P_{N_2}^{0.5} + K_{ad,2} P_{CH_4}^2 P_{H_2}^3}{1 + K_{ad,1}^{0.5} P_{N_2}^{0.5} + K_{ad,2} P_{CH_4}^2 P_{H_2}^{-3}}$$
(eq. 39)

By taking eq. 39 into eq. 31, the expression of the overall rate by assuming the surface reaction is rate-limiting can be obtained as:

$$r_{ACN} = k_{surf} K_{ad,1} K_{ad,2}^2 P_{H_2}^{-5} P_{CH_4}^4 P_{N_2} \cdot (1 + K_{ad,1}^{0.5} P_{N_2}^{0.5} + K_{ad,2} P_{CH_4}^2 P_{H_2}^{-3})^{-4}$$
(eq. 40)

Figure S1. XRD patterns of unsupported Mo₂C and commercial Mo₂C (com-Mo₂C).

Figure S2. N₂ adsorption-desorption isotherms of Al_2O_3 -supported MoC_x catalysts.

Figure S3. NH₃-TPD profiles of Al₂O₃-supported MoC_x catalysts.

Figure S4. TOS profile of TOFs of (a) C₂ (ethylene, blue; ethane, magenta) and (b) aromatics (benzene, dark yellow; toluene, purple) in N₂ (closed squares) and Ar (opened circles) steams. *Reaction conditions:* 0.18 g of $1MoC_x/Al_2O_3$, reaction temperature = 750 °C, GHSV = 1500 $mL_{CH4}/g_{cat}/h$, feed = 4.5/4.5/1 mL/min of CH₄/N₂/Ar or 4.5/5.5 mL/min of CH₄/Ar.

Figure S5. TOS profiles of the temperature effect on (a) CH₄ conversion and TOF profiles of (b) ACN, (c) ethylene, (d) ethane, (e) benzene, and (f) toluene by using $1MoC_x/Al_2O_3$.

Figure S6. CH₄-TPSR profile of $1MoC_x/Al_2O_3$. *Reaction conditions:* 0.18 g of $1MoC_x/Al_2O_3$, 300-800 °C (10 °C/min), 4.5 + 4.5 + 1 mL/min of CH₄ + N₂ + Ar.

Figure S7. TOS profiles of the effect of Mo loading on (a) CH₄ conversion and TOFs of (b) ACN, (c) ethylene, (d) ethane, (e) aromatics, and (f) HCN.

Figure S8. Methane conversion as a function of temperature.

Figure S9. TOS profiles of the dilution and H_2 concentration effect on (a) CH₄ conversion and TOFs of (b) ACN, (c) ethylene, (d) ethane, (e) aromatics, and (f) HCN by using $1MoC_x/Al_2O_3$.

Figure S10. DRIFTS spectra during N₂ purging at 750 °C by using $1MoC_x/Al_2O_3$ catalyst. The background was collected at 750 °C. Each spectrum was collected using 128 scans.

Figure S11. The parity plot of the reaction rate by assuming (a) N_2 adsorption, (b) CH₄ adsorption, and (c) surface reaction is rate-limiting in methane and N_2 conversion to ACN.

Temperature	Keq	Composition (mol)					
(°C)		CH4	N_2	CH ₃ CN	H_2		
300	3.14 x 10 ⁻¹⁷	2.000	0.500	0.000	0.000		
400	3.73 x 10 ⁻¹⁴	2.000	0.500	0.000	0.000		
500	6.25 x 10 ⁻¹²	1.999	0.500	0.001	0.001		
600	2.89 x 10 ⁻¹⁰	1.997	0.499	0.002	0.004		
700	5.48 x 10 ⁻⁹	1.992	0.498	0.004	0.010		
750	1.86 x 10 ⁻⁸	1.989	0.497	0.006	0.014		
800	5.48 x 10 ⁻⁸	1.985	0.496	0.008	0.019		
900	3.40 x 10 ⁻⁷	1.975	0.494	0.013	0.032		
1000	1.46 x 10 ⁻⁶	1.962	0.490	0.019	0.048		

Table S1. Equilibrium constant and relative compositions of methane, N₂, ACN, and H₂ as the function of temperature in the conversion of methane to ACN.^a

Catalyst	Mo 3d	l			C 1s				C/Mo
-	Mo ⁶⁺	Mo ⁴⁺	Mo ³⁺	Mo ²⁺	C–Mo	С-С	С-О	C=0	ratio ^a
Mo ₂ C	89.9	0	2.7	7.4	22.7	65.5	5.4	6.4	0.20
$1 MoC_x / Al_2O_3$	47.5	15.6	8.8	28.1	32.3	41.8	25.7	0.2	1.04
spent 1MoC _x /Al ₂ O ₃ (6-h, Ar)	82.8	5.7	3.5	8.0	0	76.8	16.2	7.1	5.66
spent $1MoC_x/Al_2O_3$ (6-h, H ₂)	77.0	12.2	2.2	8.6	0	75.9	18.7	5.4	5.56
spent 1MoC _x /Al ₂ O ₃ (12-h, Ar)	86.7	10.4	0.8	2.1	0	86.5	9.3	4.2	11.23
spent $1MoC_x/Al_2O_3$ (12-h, H ₂)	80.2	10.7	2.2	6.9	0	78.7	21.3	0	6.78

 Table S2. Percentage of Mo and C species at the surface of MoC_x catalysts.

^a Obtained by survey spectra.

Catalyst	CO uptake (µmol/g)	N2 uptake (µmol/g)	CO/N ₂ ratio
1MoC _x /Al ₂ O ₃	15.2	14.9	1.02
5MoC _x /Al ₂ O ₃	17.3	16.0	1.08
10MoC _x /Al ₂ O ₃	21.7	21.5	1.01

Table S3. CO and N₂ uptakes over Al₂O₃-supported MoC_x catalysts.

Entrv	Feed composition (mL/min)			CH4	Components concentration (umol/mL)			Reaction rate
2	CH ₄	N ₂	Ar	- conversion (%)	CH ₄	N2 ^a	H2 ^b	- (µmol/g/min)
1	0.8	8.3	1	4.1	0.95	10.89	0.17	0.03
2	1.5	7.5	1	2.4	1.93	9.90	0.27	0.06
3	2.3	6.8	1	2.7	2.89	8.91	0.47	0.13
4	3.0	6.0	1	2.6	3.86	7.92	0.65	0.19
5	3.8	5.3	1	2.5	4.83	6.93	0.87	0.17
6	4.5	4.5	1	2.4	5.80	5.94	0.90	0.24
7	5.3	3.8	1	2.2	6.78	4.95	1.04	0.22
8	6.0	3.0	1	2.1	7.75	3.96	1.03	0.27
9	6.8	2.3	1	2.1	8.72	2.97	1.25	0.28
10	7.5	1.5	1	2.0	9.70	1.98	1.16	0.33
11	8.3	0.8	1	2.7	10.60	0.99	2.19	0.06

Table S4. Catalytic data of CH₄ and N₂ conversion to ACN by using 1MoC_x/Al₂O₃ at 650 °C.

^a N₂ concentration was estimated using the mass balance of N atom as $C_{N2, outlet} = C_{N2, inlet} - C_{ACN}$.

^b H₂ concentration was estimated using the mass balance of H atom as $C_{H2, outlet} = 0.5*(4*C_{CH4, inlet} - 3*C_{ACN} - 4*C_{C2H4} - 6*C_{C2H6} - 6*C_{C6H6})$.

 Table S5. Kinetic parameters obtained from the nonlinear regression of the derived rate

 expressions (eqs. 20, 30, and 40, respectively, of the ESI).

Rate-limiting step	k 1	K 1	k 2	K2	k3
N ₂ adsorption	4.8 x 10 ⁻¹	-	-	1.2 x 10 ⁻²	-
CH ₄ adsorption	-	-6.0 x 10 ⁻¹	2.4 x 10 ⁻²	-	-
Surface reaction	-	2.0	-	3.7 x 10 ⁻²	54.7