Electronic Supplementary Information

Dehydrogenative Coupling of Methane over Pt/Al₂O₃

Catalysts: Effect of Hydrogen Co-feeding

Tatsuki Tomono,^a Riku Takamura,^a Miru Yoshida-Hirahara,^a Tomokazu Yamamoto,^b Syo Matsumura,^{b, c} Hideki Kurokawa^a and Hitoshi Ogihara^{*a}

^a Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.

E-mail: ogihara@mail.saitama-u.ac.jp

^b The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

^c National Institute of Technology, Kurume College, 1-1-1 Komorino, Kurume 830-8555, Japan

Experimental Section

CH₄ conversion was calculated based on Eq. (S1).

$$\begin{aligned} & CH_4 conversion \, / \,\% = \frac{r(converted \ CH_4)}{r(CH_{4 \ in})} \times 100 \\ & (r(C_2H_6) \times 2 + r(C_2H_4) \times 2 + r(C_3H_8) \times 3 \\ & = \frac{+ r(C_3H_6) \times 3 + r(C_6H_6) \times 6 + r(C_7H_8) \times 7 + r(coke))}{CH_{4 \ in}} \times 100 \cdots (S1) \end{aligned}$$

The formation rate of coke was estimated based on Eq. (S2)

$$r(coke)/\mu mol min^{-1} g_{cat}^{-1} = \frac{\binom{r(H_2) - r(C_2H_6) - r(C_2H_4) \times 2 - r(C_3H_8) \times 2}{-r(C_3H_6) \times 3 - r(C_6H_6) \times 9 - r(C_7H_8) \times 10)}{2} \cdots (S2)$$

The selectivity of the products was calculated on a carbon basis. For example, the equation for the selectivity of ethane is shown below.

$$Selectivity/\% = \frac{2 \times r(C_2H_6)}{(r(C_2H_6) \times 2 + r(C_2H_4) \times 2 + r(C_3H_8) \times 3)} \times 100 \cdots (S3)$$
$$+ r(C_3H_6) \times 3 + r(C_6H_6) \times 6 + r(C_7H_8) \times 7 + r(coke))$$

Fig. S1 TG profiles of spent $Pt(1)/Al_2O_3$ catalysts. T: 600 °C, flow rate: 20 (CH₄) and 20+1 (CH₄+H₂) mL min⁻¹, and catalyst mass: 0.10 g.

Fig. S2 Time course of formation rate of (a) C_2 hydrocarbons and (b) aromatics, and (c) methane conversion for DCM reaction. Catalyst: Pt(1)/Al₂O₃, T: 600 °C, flow rate: 20 (CH₄), 20+1 (CH₄+H₂), and 20+3 (CH₄+H₂) mL min⁻¹, and catalyst mass: 0.10 g.

Fig. S3 Time course of formation rate of C2 hydrocarbons and aromatics for DCM reaction. Catalyst: $Pt(1)/Al_2O_3$, T: 700 (a, b) or 800 (c, d) °C, flow rate: 20 (CH₄) and 20+X (CH₄+H₂) mL min⁻¹, and catalyst mass: 0.10 g.

Fig. S4 XRD patterns of Pt(1, 3, 5, and 10)/Al₂O₃ and θ -Al₂O₃.

Fig. S5 BF- and HAADF-STEM images and particle size distribution of fresh (a, b) $Pt(3)/Al_2O_3$, (c, d) $Pt(5)/Al_2O_3$, and (e, f) $Pt(10)/Al_2O_3$.

Fig. S6 Pt L₃-edge Fourier transforms (FT) of k^3 -weighted EXAFS oscillations.

sample	path	R/Å	CN	σ^2 / Å	$\Delta E_0 / eV$	R-factor
1wt%Pt/Al ₂ O ₃	Pt-Pt	2.73±0.01	4.22±0.83	$0.012{\pm}0.001$	10±2	0.0014
	Pt-O	$2.00{\pm}0.01$	2.69 ± 0.35	$0.007 {\pm} 0.001$	13±2	
$3wt\%Pt/Al_2O_3$	Pt-Pt	2.77 ± 0.003	5.62 ± 0.44	$0.006 {\pm} 0.0003$	10±1	0.0044
	Pt-O	2.02 ± 0.02	1.42 ± 0.38	$0.005 {\pm} 0.002$	13±3	
$5wt\%Pt/Al_2O_3$	Pt-Pt	2.76 ± 0.001	9.63±0.30	$0.005 {\pm} 0.0001$	$8{\pm}0.4$	0.0007
	Pt-O	2.01 ± 0.05	$0.19{\pm}0.15$	-0.0005 ± 0.004	13±12	
10wt%Pt/Al ₂ O ₃	Pt-Pt	2.77 ± 0.0009	10.22 ± 0.25	$0.005 {\pm} 0.0001$	9±0.3	0.0007

Table S1 EXAFS fitting results for $Pt(X)/Al_2O_3$ catalysts

The range in k was 3.0–14.0 Å⁻¹, and the fit range in distance r was 1.0–3.1 Å. Notation: R, scattering path length between the absorber and the scattering atom; CN, coordination number; σ^2 , mean square relative displacement; ΔE_0 , inner potential correction.

Fig. S7 Time course of selectivity of (a) C_2 hydrocarbons, (b) aromatics, and (c) coke for DCM reaction. Catalyst: Pt(1, 3, 5, and 10)/Al₂O₃, T: 600 °C, flow rate: 20+1 (CH₄+H₂) mL min⁻¹, and catalyst mass: 0.10 g.

Fig. S8 Product selectivity for DCM reaction Catalyst: Pt(1 and 10)/Al₂O₃, T: 600 °C, flow rate: 20+1 (CH₄+H₂) mL min⁻¹, and catalyst mass: 0.10 g (for Pt(1)/Al₂O₃) and 0.694 g (for Pt(10)/Al₂O₃).

Fig. S9 C 1s XPS of (a) fresh and (b) spent Pt(1, 3, 5, and 10)/Al₂O₃ catalysts. DCM conditions: T = 600 °C, flow rate = 20+1 (CH₄+H₂) mL min⁻¹, and catalyst mass = 0.10 g.