Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Figure S1. SEM image of (a, b) $Ni(OH)_2/CC$, (c, d) Ni_3S_4/CC , (e, f) 1T- MoS_2/CC .

Figure S2. TEM image of Ni (OH)₂/CC.

Figure S3. The XRD pattern of 1T-MoS $_2$ /CC and 1T-MoS $_2$ /Ni $_3$ S $_4$ /CC.

The XRD pattern shown that no distinct peaks for 1T-MoS₂ were observed, indicating

that the 1T-MoS $_2$ in both catalysts has a poor crystallinity.

Figure S4. TEM image of $1T-MoS_2/Ni_3S_4/CC$.

Figure S5. XPS survey of 1T-MoS₂/CC, Ni₃S₄/CC and 1T-MoS₂/Ni₃S₄/CC.

Figure S6. The TOF of $1T-MoS_2/CC$, Ni_3S_4/CC , Ni (OH)₂/CC and $1T-MoS_2/Ni_3S_4/CC$.

Figure S7. CV cycles at scan rates ranging from 20 mV s⁻¹ to 200 mV s⁻¹ of (a) $1T-MoS_2/Ni_3S_4/CC$, (b) $1T-MoS_2/$ CC, (c) Ni_3S_4/CC and (d) Ni (OH)₂/CC.

Figure S8. SEM image of $1T-MoS_2/Ni_3S_4/CC$ after 40 h chronoamperometry test.

Figure S9. XPS of $1T-MoS_2/Ni_3S_4/CC$ before and after 40 h chronoamperometry test. (a) Survey spectrum, and high-resolution spectra of (b) Mo 3d, (c) S 2p, and (d) Ni 2p.

Figure S10. The XRD pattern of $1T-MoS_2/Ni_3S_4/CC$ before and after 60 h chronoamperometry test.

Figure S11. The optimal structure model of $1T-MoS_2/Ni_3S_4$.

Figure S12. Structural models for hydrogen adsorption on Ni sites (Ni₃S₄),

Mo-edge sites (1T-MoS₂), Ni and Mo-edge sites (1T-MoS₂/Ni₃S₄).

Figure S13. The deformation of the electronic density of $1T-MoS_2/Ni_3S_4$ interfaces, in which the cyan/purple is surfaces correspond to negative/ positive spin densities.

Table S1. The loading of the catalytically active substance on the carbon cloth calculated from ICP-OES results.

Sample	Element	Concentration	Loading
		(mg/L)	(mg/cm^2)
MoS ₂ /Ni ₃ S ₄	Мо	0.41	0.41
	Ni	0.35	0.35
	S	1.42	1.42
Ni(OH) ₂	Ni	2.16	2.16

Table S2. A comparison of the catalytic performance of 1T- $MoS_2/Ni_3S_4/CC$ and recently reported MoS_2 -based HER catalysts in 1.0 M KOH.

|--|

		(mV dec ⁻¹)	
1T-MoS ₂ /Ni ₃ S ₄ /CC	44	44	This work
MoS_2/α -MoC	84	41	1
1T-2H MoS ₂ /CoS ₂	37	46	2
Ni-1T-MoS ₂	199	53	3
NiO@1T-MoS ₂	46	52	4
P-1T-CMS@CC	95	69	5
Co-MoS ₂ /V ₂ C@CC	70	99	6
Cu-MoS ₂ @NF	72	68	7
Ni(OH)2@1T-MoS2	57	70	8
NWAs	57		
N-rGO-MoS ₂ -	129	86	9
Ni(OH) ₂			
CoS2-MoS2 MSHSs	109	52	10
MoS_2/NiS_2	62	50	11
CoMoNiS-NF-31	113	85	12
(Ni, Fe)S ₂ @MoS ₂	130	101	13
Co-MoS ₂ /BCCF-21	48	52	14
Co_3S_4 $@MoS_2$	136	43	15
CoMoS	97	70	16
2.5H-PHNCMs	70	38	17
FeCoNi-HNTAs	58	38	18
MoS ₂ -Ni ₃ S ₂ /NF	98	61	19
MoS ₂ /Ni ₃ S ₂ @NF	110	83	20

Reference

- Z. Cheng, Y. Xiao, W. Wu, X. Zhang, Q. Fu, Y. Zhao and L. Qu, ACS Nano, 2021, 61, 20210702.
- P. Chang, T. Wang, Z. Liu, X. Wang, J. Zhang, H. Xiao, L. Guan and J. Tao, J. Mater. Chem. A, 2022, 10, 16115-16126.
- G. Wang, G. Zhang, X. Ke, X. Chen, X. Chen, Y. Wang, G. Huang, J. Dong, S. Chu and M. Sui, Small, 2022, 18, e2107238.
- Y. Huang, Y. Sun, X. Zheng, T. Aoki, B. Pattengale, J. Huang, X. He, W. Bian, S. Younan, N. Williams, J. Hu, J. Ge, N. Pu, X. Yan, X. Pan, L. Zhang, Y. Wei and J. Gu, Nat. Commun., 2019, 10, 982.
- C. C. Gudal, U. N. Pan, D. R. Paudel, M. R. Kandel, N. H. Kim and J. H. Lee, ACS Appl. Mater. Inter., 2022, 14, 14492-14503.
- Y. Chen, G. Meng, T. Yang, C. Chen, Z. Chang, F. Kong, H. Tian, X. Cui, X. Hou and J. Shi, Chem. Eng. J., 2022, 450, 138157.
- B. Gao, Y. Zhao, X. Du, Y. Chen, B. Guan, Y. Li, Y. Li, S. Ding, H. Zhao, C. Xiao and Z. Song, J. Mater. Chem. A, 2021, 9, 8394-8400.
- 8. K. Wang, Z. Liu, Q. Gao, N. Li and K. Yu, Appl. Surf. Sci., 2022, 593, 153408.
- 9. S. Debata, S. Banerjee and P. K. Sharma, Electrochim. Acta, 2019, 303, 257-267.
- 10. V. Ganesan and J. Kim, Int. J. Hydrogen Energ., 2020, 45, 13290-13299.

- J. Lin, P. Wang, H. Wang, C. Li, X. Si, J. Qi, J. Cao, Z. Zhong, W. Fei and J. Feng, Adv. Sci., 2019, 6, 1900246.
- Y. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol and M. G. Kanatzidis, J Am. Chem. Soc., 2019, 141, 10417-10430.
- Y. Liu, S. Jiang, S. Li, L. Zhou, Z. Li, J. Li and M. Shao, Appl. Catal. B-Environ., 2019, 247, 107-114.
- 14. Q. Xiong, Y. Wang, P. F. Liu, L. R. Zheng, G. Wang, H. G. Yang, P. K. Wong, H. Zhang and H. Zhao, Adv. Mater., 2018, 15, e1801450.
- 15. Y. Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando and Y. Yamauchi, Nano Energy, 2018, 47, 494-502.
- 16. J. Hou, B. Zhang, Z. Li, S. Cao, Y. Sun, Y. Wu, Z. Gao and L. Sun, ACS Cata., 2018, 8, 4612-4621.
- 17. H. Li, S. Chen, Y. Zhang, Q. Zhang, X. Jia, Q. Zhang, L. Gu, X. Sun, L. Song and X. Wang, Nat. Commun., 2018, 9, 2452.
- 18. H. Li, S. Chen, X. Jia, B. Xu, H. Lin, H. Yang, L. Song and X. Wang, Nat. Commun., 2017, 8, 15377.
- Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, ACS Cata., 2017, 7, 2357-2366.
- 20. J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, Angew Chem. Int. Ed. Engl., 2016, 55, 6702-6707.