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S1 Unit cell POSCAR for optimized Ag2Se monolayer
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S2 Detailed electronic band structures of Ag2Se monolayer under (a) -2%, (b) -4%, (c) -6%, 
(d) 2%, (e) 4%, (f) 6% and (g) 0% biaxial straining, at PBE level. Calculated PDOS of Ag2Se 

monolayer under (h) 0% and (i) -6%, at PBE level.

(a) (b)

S3 Electrostatic potential for Ag2Se monolayer (a) 0% and (b) -6% biaxial straining.
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S4 SLME computational details

Theoretical maximum solar cell efficiency can be calculated using the following formula:

𝜂 =
𝑃𝑚

𝑃𝑖𝑛
 

where Pm is the highest achievable power density of the thin-film solar absorber material, while 

Pin is the incident power density of the entire solar spectrum. The maximum output power 

density P=JV of the material can be found utilizing J-V characteristics of solar cell as proposed 

by Yu and Zunger [1]. Here, J indicates the total current density, while V represents the 

potential over the absorber layer, as seen in the following relationship:

𝐽 = 𝐽𝑠𝑐 ‒ 𝐽𝑟(𝑒
𝑒𝑉

𝑘𝐵𝑇
‒ 1)

in which Jsc, Jr, kB and T denote, respectively, the short-circuit current, the total recombination 

current density, the Boltzmann constant, and the temperature. Absorptivity α(E), photon flux 

from incident solar spectrum Isun(E) (AM1.5G) and black-body spectrum Ibb(E,T) can be used 

to calculate Jsc and Jr, as follows:

𝐽𝑠𝑐 = 𝑒
∞

∫
0

𝛼(𝐸)𝐼𝑠𝑢𝑛(𝐸)𝑑𝐸

𝐽𝑟 = 𝑒
∞

∫
0

𝛼(𝐸)𝐼𝑏𝑏(𝐸,𝑇)𝑑𝐸

where α(E) and L are the absorbance coefficient and thickness of the thin film, respectively. 

Total recombination current density is largely contributed by radiative recombination current 

density Jrad and non-radiative recombination current density Jnon-rad.
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S5 The displacement of CBM and VBM for Ag2Se monolayer as a function of applied strain 
in the (x) zigzag and (y) armchair directions, respectively. The linear fit offers the 

deformation potentials of the monolayer under study. me and mh are in electron rest mass unit.

S6 Solar-to-hydrogen (STH) efficiency

Prediction of STH for unstrained and strained Ag2Se monolayers were estimated using 

modified MATLAB coding based on the following:

𝜂𝑆𝑇𝐻 =

1.23
∞

∫
𝐸

𝑃(𝑥)
𝑥

𝑑𝑥

∞

∫
𝐸𝑔

𝑃(𝑥)𝑑𝑥

                                                               

where x, P(x) and E are the photon energy hω, AM1.5G solar energy flux at hω and actual 

photon energy used for water splitting, computed by:

𝐸 = { 𝐸𝑔,[𝜒(𝐻2) ≥ 0.2,𝜒(𝑂2) ≥ 0.6]
𝐸𝑔 + 0.2 ‒ 𝜒(𝐻2),[𝜒(𝐻2) < 0.2,𝜒(𝑂2) ≥ 0.6]
𝐸𝑔 + 0.6 ‒ 𝜒(𝑂2),[𝜒(𝐻2) ≥ 0.2,𝜒(𝑂2) < 0.6]

𝐸𝑔 + 0.8 ‒ 𝜒(𝐻2) ‒ 𝜒(𝑂2),[𝜒(𝐻2) < 0.2,𝜒(𝑂2) < 0.6]
�                           
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In this work, χ(H2) and χ(O2) represent the HER and OER overpotential, forecasted by HSE 

hybrid functional to be 0.74 (0.36) and 0.71 (0.31) eV for unstrained Ag2Se (-6% strained) 

monolayer, respectively.
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