Supporting Information

Forecasting the unrevealed surface controlled photocatalytic water splitting in twodimensional Ag₂Se with ultrafast carrier mobility: A first-principles study

Yee Hui Robin Chang ^{a, *}, Keat Hoe Yeoh ^{b, *}, Junke Jiang ^c, Soo See Chai ^d, Yusuf Zuntu Abdullahi ^{e, f}, Heng Yen Khong ^a, Thong Leng Lim ^g, Moi Hua Tuh ^h

- ^a Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
- ^b Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- ^c Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5612 Eindhoven, The Netherlands
- Present Address: Univ Rennes, ENSCR, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
- ^d Faculty of Computer Science & Information Technology (FCSIT), Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
- ^e Department of Physics, Faculty of Science, Kaduna State University, PMB 2339, Kaduna, Nigeria
- ^f Department of Physics, Adnan Menderes University, Aydın 09010, Turkey
- ^g Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia
- ^h Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Cawangan Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

*Electronic mail: robincyh@uitm.edu.my; keathoe.yeoh@gmail.com

Keywords: Photocatalysis; Absorbance; Monolayer; Water splitting; Electronic structure

S1 Unit cell POSCAR for optimized Ag₂Se monolayer

Ag₂Se

02		
1.00000000000000		
5.856039000000000	-0.02075100000000	0 -0.043500000000000
0.024321000000000	5.880983999999999	8 0.003604000000000
-0.185075000000000	0.015500000000000	0 17.737774000000017
Ag Se		
4 2		
Direct		
0.6851229999999973	0.704551000000021	0.497759000000021
0.1844719999999995	0.719334000000035	0.5008369999999971
0.6973569999999967	0.2048819999999978	0.4989769999999965
0.199361000000032	0.2178729999999973	0.5021509999999978
0.941817000000003	0.4593679999999978	0.416828000000024

0.451163999999986 0.958443000000026 0.5834479999999971

S2 Detailed electronic band structures of Ag₂Se monolayer under (a) -2%, (b) -4%, (c) -6%,
(d) 2%, (e) 4%, (f) 6% and (g) 0% biaxial straining, at PBE level. Calculated PDOS of Ag₂Se monolayer under (h) 0% and (i) -6%, at PBE level.

S3 Electrostatic potential for Ag_2Se monolayer (a) 0% and (b) -6% biaxial straining.

S4 SLME computational details

Theoretical maximum solar cell efficiency can be calculated using the following formula:

$$\eta = \frac{P_m}{P_{in}}$$

where P_m is the highest achievable power density of the thin-film solar absorber material, while P_{in} is the incident power density of the entire solar spectrum. The maximum output power density P=JV of the material can be found utilizing J-V characteristics of solar cell as proposed by Yu and Zunger [1]. Here, J indicates the total current density, while V represents the potential over the absorber layer, as seen in the following relationship:

$$J = J_{sc} - J_r \left(e^{eV/k_B T} - 1 \right)$$

in which J_{sc} , J_r , k_B and T denote, respectively, the short-circuit current, the total recombination current density, the Boltzmann constant, and the temperature. Absorptivity $\alpha(E)$, photon flux from incident solar spectrum $I_{sun}(E)$ (AM1.5G) and black-body spectrum $I_{bb}(E,T)$ can be used to calculate J_{sc} and J_r , as follows:

$$J_{sc} = e \int_{0}^{\infty} \alpha(E) I_{sun}(E) dE$$
$$J_{r} = e \int_{0}^{\infty} \alpha(E) I_{bb}(E,T) dE$$

where $\alpha(E)$ and L are the absorbance coefficient and thickness of the thin film, respectively. Total recombination current density is largely contributed by radiative recombination current density J_{rad} and non-radiative recombination current density J_{non-rad}.

S5 The displacement of CBM and VBM for Ag_2Se monolayer as a function of applied strain in the (x) zigzag and (y) armchair directions, respectively. The linear fit offers the deformation potentials of the monolayer under study. m_e and m_h are in electron rest mass unit.

S6 Solar-to-hydrogen (STH) efficiency

Prediction of STH for unstrained and strained Ag₂Se monolayers were estimated using modified MATLAB coding based on the following:

$$\eta_{STH} = \frac{1.23 \int_{E}^{\infty} \frac{P(x)}{x} dx}{\int_{E_{g}}^{\infty} P(x) dx}$$

where x, P(x) and E are the photon energy h ω , AM1.5G solar energy flux at h ω and actual photon energy used for water splitting, computed by:

$$E = \begin{cases} E_{g'}[\chi(H_2) \ge 0.2, \chi(O_2) \ge 0.6] \\ E_g + 0.2 - \chi(H_2), [\chi(H_2) < 0.2, \chi(O_2) \ge 0.6] \\ E_g + 0.6 - \chi(O_2), [\chi(H_2) \ge 0.2, \chi(O_2) < 0.6] \\ E_g + 0.8 - \chi(H_2) - \chi(O_2), [\chi(H_2) < 0.2, \chi(O_2) < 0.6] \end{cases}$$

In this work, $\chi(H_2)$ and $\chi(O_2)$ represent the HER and OER overpotential, forecasted by HSE hybrid functional to be 0.74 (0.36) and 0.71 (0.31) eV for unstrained Ag₂Se (-6% strained) monolayer, respectively.

[1] L. Yu and A. Zunger (2012). Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials. *Phys. Rev. Lett.*, 108, 068701.