Supplementary Information

Study on the catalytic activity and hydrothermal stability of one-pot synthesized Fe-based FER zeolites for NH₃-SCR

Xinyue Hu^a, Jialing Chen^{*a}, Shaokang He^a, Tingyu Liang^{*b}, Shenke Zheng^{*c}, Lijun Lu^d, Chenxi

Hao^a, Kaixin Chen^a, Tingting Li^a, Lan Yi^a, Li Guo^a, Xiaoqin Wu^a

^a Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China

^b Key Laboratory for Green Chemical Process of Ministry of Education, and Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China

^c Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China

^d R&D Center of Wuhan Iron&Steel Co., LTD., Baosteel Central Research Institute

† Corresponding authors: Tel.: +86 027 68862335. E-mail addresses: chenjialing@wust.edu.cn; ltingyu2006@126.com; zhengshenke@hgnu.edu.cn.

Figure S1 NH_3 -TPD fitting results of fresh and aged OP-Fe-FER-x and IM-Fe/SSZ-20 zeolites.

Figure S2 UV-vis fitting results of fresh and aged OP-Fe-FER-x and IM-Fe/SSZ-20 zeolites.

Figure S3. XPS spectra fitting results of fresh and aged OP-Fe-FER-x zeolites (the fit peaks 1-6 are centered at about 710.8 eV, 713.6 eV, 718.5 eV, 723.1 eV, 726.7 eV and 732.1 eV, respectively).

According to literatures¹⁻⁴, Fe³⁺ $2p_{1/2}$ and $2p_{3/2}$ signals are located at about 724 eV and 711 eV with satellite peaks at ca. 733 eV and 719 eV, while the Fe²⁺ $2p_{1/2}$ and $2p_{3/2}$ signals are located at ca. 723 eV and 710 eV with satellite peaks at ca. 729 eV and 715 eV, respectively. Therefore, the fit peak 1 and 4 are attributed to Fe²⁺ species, while the fit peak 2, 3, 5 and 6 are attributed to Fe³⁺ species and the corresponding satellite peaks.

Figure S4. H₂-TPR fitting results of fresh and aged OP-Fe-FER-x zeolites.

Figure S5. H₂-TPR fitting results of fresh IM-Fe/SSZ-20 zeolite.

Figure S6 NO_x conversion in NH₃-SCR as a function of temperature over fresh and aged OP-Fe-FER-x and IM-Fe/SSZ-20 zeolites. Reaction conditions: 500 ppm NO, 600 ppm NH₃, 5.5% O₂ and balanced N₂, GHSV = 36000 h⁻¹.

Figure S7 (A) NO-TPD and (B) NO+O₂-TPD results over fresh and aged IM-Fe/SSZ-20 zeolites.

Catalysts	Framework topology	Preparation method ^a	Fe content (wt. %)	NH ₃ -SCR reaction condition	Temperature window (°C)	NO _x conversion	Reference
OP-Fe-FER-30	FER	OP	5.4	500 ppm NO, 600 ppm NH ₃ , 5.5 vol.% O ₂ , balanced N ₂ , GHSV = $3.6 \times 10^4 h^{-1}$	210 - 530	>80%	This work
IM-Fe/SSZ-20	СНА	IWI	5.0	500 ppm NO, 600 ppm NH ₃ , 5.5 vol.% O ₂ , balanced N ₂ , GHSV = $3.6 \times 10^4 h^{-1}$	264 - 460	>80%	This work
Fe/ZSM-5	MFI	IE	1.9	1000 ppm NO, 1000 ppm NH ₃ , 5 vol.% O ₂ , 6 vol.% H ₂ O and balanced He, GHSV = $1.9 \times 10^5 $ h ⁻¹	300 - 550	>80%	5
Fe/Beta	BEA	CVD	4.7	1000 ppm NO, 1200 ppm NH ₃ , 8 vol.% O ₂ , 8 vol.% H ₂ O, 10 vol.%CO ₂ , balanced N ₂ , GHSV = 2.1×10^5 h ⁻¹	300 - 500	>90%	6
Fe/Mordenite	MOR	IE	2.3	500 ppm NO, 500 ppm NH ₃ , 5 vol.% O ₂ , balanced N ₂ , GHSV = $1.6 \times 10^4 h^{-1}$	350 - 500	100%	7
Fe/SSZ-13	CHA	IE	1.37	350 ppm NO, 350 ppm NH ₃ , 14 vol.% O ₂ , 2.5 vol.% H ₂ O, balanced N ₂ , GHSV = $2 \times 10^5 $ h ⁻¹	320 - 550	>80%	8
Fe-SAPO-34	СНА	ОР	1.0	350 ppm NO, 350 ppm NH ₃ , 14 vol.% O ₂ , 5 vol.%CO ₂ , balanced Ar, GHSV = $3.0 \times 10^4 h^{-1}$	300 - 600	>80%	9
Fe/Ferrierite	FER	CVD	4.7	1000 ppm NO, 1200 ppm NH ₃ , 8 vol.% O ₂ , 8 vol.% H ₂ O, 10 vol.%CO ₂ , balanced N ₂ , GHSV = 2.1×10^5 h ⁻¹	250 - 500	>90%	6
Fe-SSZ-39	AEI	OP	1.01	50 ppm NO, 60 ppm NH ₃ , 10 vol.% O ₂ , 10 vol.% H ₂ O, balanced N ₂ , GHSV = $4.5 \times 10^5 $ h ⁻¹	300 - 550	>90%	10
Fe-ERI	ERI	ОР	1.03	500 ppm NO, 600 ppm NH ₃ , 10 vol.% O ₂ , 10 vol.% H ₂ O, balanced N ₂ , GHSV = $1 \times 10^5 h^{-1}$	450 - 550	>60%	11
Fe-SSZ-16	AFX	ОР	0.95	500 ppm NO, 500 ppm NH ₃ , 5 vol.% O ₂ , 10 vol.% H ₂ O, balanced N ₂ , GHSV = $1 \times 10^5 h^{-1}$	400 - 550	>80%	11
Fe-MCM-22	MWW	OP	4.8	500 ppm NO, 500 ppm NH ₃ , 5 vol.% O ₂ and balanced N ₂ , GHSV = $6 \times 10^4 h^{-1}$	190 - 490	>80%	12
Fe/LTA	LTA	IE	1.8	500 ppm NO, 500 ppm NH ₃ , 5 vol.% O ₂ , 10 vol.% H ₂ O and balanced N ₂ , GHSV = $1 \times 10^5 \text{ h}^{-1}$	370 - 580	>90%	13
Fe/UZM-35	MSE	IE	1.9	500 ppm NO, 500 ppm NH ₃ , 5 vol.% O ₂ , 10 vol.% H ₂ O and balanced N ₂ , GHSV = $1 \times 10^5 $ h ⁻¹	250 - 570	>90%	14

Table S1 Representative Fe-based zeolite catalysts for NH₃-SCR

^{*a*} OP, IWI, IE and CVD represent one-pot synthesis method, incipient wetness impregnation method, ion-exchange method and chemical vapor deposition method, respectively.

References:

- 1. F. Mercier, N. Thromat and C. J. A. S. S. Beaucaire], Appl. Surf. Sci., 2000, 165, 2880302.
- P. Boron, L. Chmielarz, J. Gurgul, K. Łatka, B. Gil, B. Marszałek and S. Dzwigaj, *Microporous Mesoporous Mater.*, 2015, 203, 73-85.
- 3. T. Yamashita and P. Hayes, Appl. Surf. Sci., 2008, 254, 2441-2449.
- 4. D. D. Hawn and B. M. DeKoven, Surf. Interface Anal., 1987, 10, 63-74.
- 5. J. Li, R. Zhu, Y. Cheng, C. K. Lambert and R. T. Yang, Environ. Sci. Technol., 2010, 44, 1799-1805.
- 6. M. Iwasaki, K. Yamazaki and H. Shinjoh, Appl. Catal. B: Environ., 2011, 102, 302-309.
- 7. L. Ma, J. Li, Y. Cheng, C. K. Lambert and L. Fu, Environ. Sci. Technol., 2012, 46, 1747-1754.
- F. Gao, M. Kollár, R. K. Kukkadapu, N. M. Washton, Y. Wang, J. Szanyi and C. H. Peden, *Appl. Catal. B: Environ.*, 2015, 164, 407-419.
- S. Andonova, S. Tamm, C. Montreuil, C. Lambert and L. Olsson, *Appl. Catal. B: Environ.*, 2016, 180, 775-787.
- N. Martin, P. N. R. Vennestrom, J. R. Thogersen, M. Moliner and A. Corma, *ChemCatChem*, 2017, 9, 1754-1757.
- N. Martín, C. Paris, P. N. R. Vennestrøm, J. R. Thøgersen, M. Moliner and A. Corma, *Appl. Catal. B: Environ.*, 2017, 217, 125-136.
- 12. J. Chen, G. Peng, W. Zheng, W. Zhang, L. Guo and X. Wu, *Catal. Sci. Technol.*, 2020, **10**, 6583-6598.
- 13. T. Ryu, Y. Kang, I.-S. Nam and S. B. Hong, React. Chem. Eng., 2019, 4, 1050-1058.
- 14. T. Ryu and S. B. Hong, Appl. Catal. B: Environ., 2020, 266, 118622-118630.