Electronic Supplementary Material

Investigation of the effect of thermal annealing of Ni-Cobaltite nanoparticles on their structure, electronic properties and performance as catalysts for the total oxidation of di(methyl)ether (DME).

Daniel Onana Mevoa^a, Stephane Kenmoe^b, Muhammad Waqas^c, Dick Hartmann Douma^d,

Daniel Manhouli Daawe^e, Katia Nchimi Nono^f, Ralph Gebauer^g and Patrick Mountapmbeme

Kouotou *e,h

^aDepartment of Chemistry, Faculty of Sciences, University of Maroua, P.O. Box 55, Cameroon.

^bDepartment of Theoretical Chemistry, University of Duisburg-Essen, Universitätsstr. 2, D-45141 Essen, Germany

^cDepartment of Mechanical Engineering, College of Engineering and Technology, University of Sargodha, Sargodha 40100, Pakistan.

^dGroupe de Simulations Numériques en Magnétisme et Catalyse, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville B.P. 69, Congo.

^eNational advanced school of engineering, University of Maroua, P.O. Box. 46, Maroua, Cameroon ^fInstitute fur Anorganische Chemie Christian-Albrechts-Universit^eat zu Kiel,Max-Eyth-Strasse 2, 24118

Kiel, Germany.

^gThe Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy

^hHigher Institute of Agriculture, Wood, Water and Environment, University of Ebolowa, P.O. Box 746 Ebolowa-Cameroon.

*Corresponding authors: <u>mkpatrick1982@gmail.com</u>

Section 1: XPS details: Results of curve-fitting on the Co 2p, Ni 2p and O1s binding energies and relative atomic percentage for the five sets of catalysts.

- 2+ 10 - 2+
0³⁺/C0²⁺
4.12
o ³⁺ /Co ²⁺
3.26
o ³⁺ /Co ²⁺
2.68
o ³⁺ /Co ²⁺
2.03
-

Table ESM1: Results of curve-fitting on the Co 2p binding energies and relative atomic percentage for the five sets of catalysts.

Note: BE refers to binding energy, and RA refers to the relative area of the peak.

Catalysts	Parameters	Ni 2p3/2			imeters Ni 2p3/2 Ni			Ni 2p1/	2
C03O4	-	-	-	-	-	-	-		
	Species	Ni ²⁺	Ni ³⁺	Ni ³⁺ /Ni ²⁺	Ni ²⁺	Ni ³⁺	Ni ³⁺ /Ni ²⁺		
(NiCo2O4)500	BE (eV)	854.20	855.84	2 1 2	871.57	873.20	2 / 7		
	RA (%)	24.20	75.80	3.13	21.42	78.58	3.6/		
	Species	Ni ²⁺	Ni ³⁺	Ni ³⁺ /Ni ²⁺	Ni ²⁺	Ni ³⁺	Ni ³⁺ /Ni ²⁺		
(NiCo ₂ O ₄) ₄₅₀	BE (eV)	854.19	855.95	0.70	871.41	872.74	0 / 1		
	RA (%)	27.57	72.43	2.63	27.70	72.30	2.61		
	Species	Ni ²⁺	Ni ³⁺	Ni ³⁺ /Ni ²⁺	Ni ²⁺	Ni ³⁺	Ni ³⁺ /Ni ²⁺		
(NiC02O4)350	BE (eV)	854.18	855.85	0.07	871.37	872.76	0.00		
	RA (%)	32.72	67.28	2.06	30.98	69.02	2.23		
	Species	Ni ²⁺	Ni ³⁺	Ni ³⁺ /Ni ²⁺	Ni ²⁺	Ni ³⁺	Ni ³⁺ /Ni ²⁺		
Ni_2O_3	BE (eV)	854.42	856.27	1 10	871.65	873.25	1.07		
	RA (%)	45.60	54.40	1.17	48.36	51.64	1.07		

Table ESM2: Results of curve-fitting on the Ni 2p binding energies and relative atomic percentage for the five sets of catalysts.

Note: BE refers to binding energy, and RA refers to the relative area of the peak.

Catalysts	Parameters	O 1s				
	Species	O ²⁻	CO ₃ ²⁻	OH-	$O_{\text{Lat}}/O_{\text{Ads}}$	
(NiC02O4)500	BE (eV)	530.47	531.88	532.96	1.68	
	RA (%)	62.71	29.20	8.09		
(NiC02O4)450	Species	O ²⁻	CO32-	OH.	O_{Lat}/O_{Ads}	
	BE (e∨)	530.52	531.75	532.70	1.47	
	RA (%)	59.44	28.03	12.53		
(NiCo2O4)350	Species	O ²⁻	CO ₃ ²⁻	OH-	$O_{\text{Lat}}/O_{\text{Ads}}$	
	BE (eV)	529.74	531.03	532.09	1.32	
	RA (%)	56.95	27.12	15.93		
C03O4	Species	O ²⁻	CO32-	OH-	$O_{\text{Lat}}/O_{\text{Ads}}$	
	BE (eV)	529.91	531.04	532.02	1.18	
	RA (%)	54.14	15.41	30.45		
Ni ₂ O ₃	Species	O ²⁻	CO ₃ ²⁻	OH-	$O_{\text{Lat}}/O_{\text{Ads}}$	
	BE (eV)	530.03	531.16	532.13	1.11	
	RA (%)	52.71	12.85	34.44		

Table ESM3: Results of curve-fittings on the O1s binding energies and relative atomic percentage for the four sets of catalysts

Note: BE refers to the binding energy; O_{Lat} refers to the lattice oxygen; O_{Ads} refers to the adsorption oxygen; RA refers to the relative area of the peak.

Section 2: Catalytic performance comparison with the literature data.

Table ESM4. Comparison of the $[NiCo_2O_4]_{500}$ catalytic efficiency (T₅₀, T₉₀) to that of the single and mixed oxides reported catalysts from the literature.

Material	Weight (mg)	Gas composition	T ₅₀ (°C)	T ₉₀ (°C)	Refs.	
Singles oxides						
C0 ₃ O ₄	60	5% DME/20% O2 in Ar	300	325	TW	
Fe ₃ O ₄	100	900 ppm DME /20% O_2 in He	310	345	[1]	
CuO	100	900 ppm DME /20% O_2 in He	311	358		
α -MnO ₂	100	2% DME /20% O2 in He	205	238	[2]	
Mixed oxides						
[NiCo ₂ O ₄] ₅₀₀	60	5% DME/20% O2 in Ar	200	240	TW	
Fe0,67CU0,33	100	900 ppm DME /20% O2 in He	265	292		
Fe0,50CU0,50	100	900 ppm DME /20% O2 in He	278	313	[1]	
Fe0,33CU0,67	100	900 ppm DME /20% O_2 in He	287	321		
Co _{2.1} Fe _{0.9} O ₄	20	1% DME/10% O2 in Ar	356	409	[3]	

Note: TW stand for this work, T₅₀ and T₉₀ stand for temperature at 50 and 90% conversion of DME.

References

- 1. Smyrnioti M., Ioannides T. Dimethyl Ether Oxidation over Copper Ferrite Catalysts . Catalysts 2022, 12, 604.
- 2. Cheng, G.; Yu, L.; He, B.; Sun, M.; Zhang, B.; Ye, W.; Lan, B. Catalytic Combustion of Dimethyl Ether over a-MnO₂ Nanostructures with Different Morphologies. *Appl. Surf. Sci.* 2017, 409, 223–231.
- Tian, Z.-Y.; Kouotou, P.M.; El Kasmi, A.; Tchoua Ngamou, P.H.; Kohse-Hoinghaus, K.; Vieker, H.; Beyer, A.; Golzhauser, A. Low-Temperature Deep Oxidation of Olefins and DME over Cobalt Ferrite. Proc. Combust. Inst. 2015, 35, 2207–2214.