Supporting information

Non-thermal Plasma Assisted Non-oxidative Methane Liquefaction for Fuel

Production at Near Ambient Conditions

Shijun Meng^a, Wenping Li^a, Zhaofei Li^a, Hua Song^{*a}

* Correspondence to: <u>sonh@ucalgary.ca</u>

^a Department of Chemical and Petroleum Engineering, University of Calgary, 2500
 University Dr NW, Calgary, Alberta T2N 1N4, Canada

Equations

Average methane conversion was determined by:

 CH_4 conversion (%) = (1 - $\frac{moles of unreacted CH_4}{moles of fed CH_4}) \times 100\mathbb{Z}$

The selectivity of total gas products (S_G, C%) was defined by:

$$S_{G}(C\%) = \frac{\sum(\text{mole of gas product } i \times \text{carbon number of gas product } i)}{\text{mole of converted } CH_{4}}$$

The selectivity of total solid products (S_S, C%) was determined by:

 $\mathbf{S}_{S}(C\%) = \frac{mass \ of \ coke \ on \ spent \ electrode \ and \ catalyst}{mass \ of \ carbon \ in \ the \ converted \ CH_4}$

The liquid product selectivity (S_L, C%) was defined as:

 $S_{\rm L}(\rm C\%) = 100 - S_{\rm G} - S_{\rm S}$

The gas product composition was determined by micro-GC results.

The liquid product composition was given by GC-MS results.

Energy efficiency (EE) was defined as:

 $EE\left(\frac{mmol}{kJ}\right) = \frac{mmoles of converted methane per second}{P_{input} (W)} \times 1000$

Figures

Fig. S1 Schematic of performance evaluation system.

Fig. S2 Emission spectrum of the CH₄/Ar plasma.

To analyze the important species generated during the NTP-assisted methane liquefaction, the light released from CH_4/Ar plasma was captured by a UV/vis spectrometer. As shown in Fig. S2, C_1 (300-450 nm), C_2 (500-650 nm), and H (488 nm) species are detected in the emission spectrum of the CH_4/Ar plasma, (1-3) suggesting plasma can activate methane and generate these energetic species in the NTP reactor.

Fig. S3 The carbon distribution of paraffins in liquid product collected from the glass bead run, SBA-15 run, and control run.

Fig. S4 TGA analysis of spent catalyst under air. a) SBA-15; b) HZSM-5(23); c) HZSM-5(80); d) HZSM-5(280); e) UZSM-5(80).

Fig. S5 Methane conversion of fresh and reloaded SBA-15 in the 4-hour runs.

CH ₄ flow rate	CH ₄ conversion	Power	EE	Ref.
(sccm)	(%)	(W)	(mmol/kJ)	
10	43.3	21	0.140	This work
20	20	20	0.136	(4)
20	36	50	0.098	(4)
20	45	80	0.077	(4)
20	46.5	100	0.063	(4)
30	38	100	0.078	(4)
40	31	100	0.084	(4)
60	23	100	0.094	(4)
100	18	100	0.123	(4)
2	48.3	120	0.005	(5)
10	64	30	0.145	(6)
10	73	70	0.071	(6)
10	77	155	0.034	(6)
10	79	270	0.020	(6)
20	63.7	100	0.087	(7)

 Table S1 The reported energy efficiency of NTP-assisted non-oxidative methane

 conversion.

References

1. Bai H, Huang B, Liu Y, Zhang C, Shao T. Reaction mechanism in non-thermal plasma enabled methane conversion: correlation between optical emission spectroscopy and gaseous products. Journal of Physics D: Applied Physics. 2021;54(42):424002.

2. Barni R, Benocci R, Spinicchia N, Roman HE, Riccardi C. An experimental study of plasma cracking of methane using DBDs aimed at hydrogen production. Plasma Chemistry and Plasma Processing. 2019;39:241-58.

3. Huang B, Zhang C, Bai H, Zhang S, Ostrikov KK, Shao T. Energy pooling mechanism for catalyst-free methane activation in nanosecond pulsed non-thermal plasmas. Chemical Engineering Journal. 2020;396:125185.

4. Lü J, Li Z. Conversion of natural gas to C2 hydrocarbons via cold plasma technology. Journal of natural gas chemistry. 2010;19(4):375-9.

5. Cho W, Baek Y, Park D, Kim YC, Anpo M. The conversion of natural gas to higher hydrocarbons using a microwave plasma and catalysts. Research on chemical intermediates. 1998;24:55-66.

6. Ghanbari M, Binazadeh M, Zafarnak S, Taghvaei H, Rahimpour MR. Hydrogen production via catalytic pulsed plasma conversion of methane: Effect of Ni–K2O/Al2O3 loading, applied voltage, and argon flow rate. International Journal of Hydrogen Energy. 2020;45(27):13899-910.

7. Cho W, Baek Y, Kim YC, Anpo M. Plasma catalytic reaction of natural gas to C2 product over Pd-NiO/Al2O3 and Pt-Sn/Al2O3 catalysts. Research on chemical intermediates. 2002;28:343-57.