Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

CeO₂-supported Ni and Co catalysts prepared by solution combustion method for H₂ production from glycerol: The effect of fuel/oxidizer ratio and oxygen excess

Anna N. Matveyeva^{a*}, Shamil O. Omarov^a, Marianna A. Gavrilova^{a,b}, Andrey D. Trofimuk^c, Johan Wärnå^d, Dmitry Yu. Murzin^{d*}

^aLaboratory of Materials and Processes for Hydrogen Energy, Ioffe Institute, Politekhnicheskaya ul. 28, 194021 St. Petersburg, Russia

^bDepartment of Physical Chemistry, St. Petersburg State Institute of Technology (Technical University), Moskovskiy pr. 26, 190013 St. Petersburg, Russia

^cLaboratory of Physics for Cluster Structures and Colloid Physics Laboratory, Ioffe Institute,

Politekhnicheskaya ul. 28, 194021 St. Petersburg, Russia

^dLaboratory of Industrial Chemistry and Reaction Engineering, Åbo Akademi University, Henriksgatan 2, 20500 Turku/Åbo, Finland

*e-mail: anna.matveyeva@mail.ioffe.ru, dmurzin@abo.fi

Chemical equations used to obtain NiO-CeO₂

Total valency of glycine: $C_2H_5NO_2 = 4 \cdot 2 + 1 \cdot 5 - 2 \cdot 2 = +9$ Total valency of urea: $(NH_2)_2CO = 1 \cdot 4 + 4 - 2 = +6$ Total valency of oxidizers: $Ce(NO_3)_3 = 3 - 2 \cdot 3 \cdot 3 = -15$; $Ni(NO_3)_2 = 2 - 2 \cdot 3 \cdot 2 = -10$; $Co(NO_3)_2 = 2 - 2 \cdot 3 \cdot 2 = -10$; $NH_4NO_3 = 1 \cdot 4 - 2 \cdot 3 = -2$

With glycine

1) $\underline{\varphi=0.72:} 2Ce(NO_3)_3(aq) + 2Ni(NO_3)_2(aq) + 4C_2H_5NO_2 = 2(NiO \cdot CeO_2) + 7N_2 + 8CO_2 + 3O_2 + (10H_2O)$

2) $\underline{\varphi=1:}$ 36Ce(NO₃)₃(aq) + 36Ni(NO₃)₂(aq) + 100C₂H₅NO₂ + 9O₂ = 36(NiO · CeO₂) + 140N₂ + 200CO₂ + (250H₂O)

3) $\underline{\varphi = 1.25}$: 280Ce(NO₃)₃(aq) + 280Ni(NO₃)₂(aq) + 972C₂H₅NO₂ + 507O₂ = 280(NiO \cdot CeO₂) + 1186N₂ + 1944CO₂ + (2430H₂O)

4) $\varphi = 1.4$: 1040Ce(NO₃)₃(aq) + 1040Ni(NO₃)₂(aq) + 4044C₂H₅NO₂ + 2859O₂ = 1040(NiO·CeO₂) + 4622N₂ + 8088CO₂ + (10110H₂O)

5) $\underline{\varphi = 1.5}$: 24Ce(NO₃)₃(aq) + 24Ni(NO₃)₂(aq) + 100C₂H₅NO₂ + 81O₂ = 24(NiO \cdot CeO₂) + 110N₂ + 200CO₂ + (250H₂O)

6) $\underline{\varphi=2:}$ 18Ce(NO₃)₃(aq) + 18Ni(NO₃)₂(aq) + 100C₂H₅NO₂ + 117O₂ = 18(NiO·CeO₂) + 95N₂ + 200CO₂ + (250H₂O)

7) $\underline{\varphi=2.5:}$ 140Ce(NO₃)₃(aq) + 140Ni(NO₃)₂(aq) + 972C₂H₅NO₂ + 1347O₂ = 140(NiO·CeO₂) + 836N₂ + 1944CO₂ + (2430H₂O)

With glycine and NH₄NO₃

8) $\underline{\varphi = 1.6}$: 72Ce(NO₃)₃(aq) + 72Ni(NO₃)₂(aq) + 400C₂H₅NO₂ + 222NH₄NO₃ + 357O₂ = 72(NiO·CeO₂) + 602N₂ + 800CO₂ + (1444H₂O)

9) $\varphi = 2.22$: 350Ce(NO₃)₃(aq) + 350Ni(NO₃)₂(aq) + 2430C₂H₅NO₂ + 539NH₄NO₃ + 3098O₂ = 350(NiO·CeO₂) + 2629N₂ + 4860CO₂ + (7153H₂O)

With urea

10) $\varphi = 1$: 12Ce(NO₃)₃(aq) + 12Ni(NO₃)₂(aq) + 50(NH₂)₂CO + 3O₂ = 12(NiO · CeO₂) + 80N₂ + 50CO₂ + (100H₂O)

11) $\underline{\varphi=2}$: 12Ce(NO₃)₃(aq) + 12Ni(NO₃)₂(aq) + 100(NH₂)₂CO + 78O₂ = 12(NiO · CeO₂) + 130N₂ + 100CO₂ + (200H₂O)

12) $\underline{\varphi=3}$: 12Ce(NO₃)₃(aq) + 12Ni(NO₃)₂(aq) + 150(NH₂)₂CO + 153O₂ = 12(NiO · CeO₂) + 180N₂ + 150CO₂ + (300H₂O)

Chemical equations used to obtain CoO-CeO₂

With glycine

13) $\underline{\varphi=1:}$ 36Ce(NO₃)₃(aq) + 36Co(NO₃)₂(aq) + 100C₂H₅NO₂ + 9O₂ = 36(CoO·CeO₂) + 140N₂ + 200CO₂ + (250H₂O) 14) $\underline{\varphi=1.5:}$ 24Ce(NO₃)₃(aq) + 24Co(NO₃)₂(aq) + 100C₂H₅NO₂ + 81O₂ = 24(CoO·CeO₂) + 110N₂ + 200CO₂ + (250H₂O) 15) $\underline{\varphi=2:}$ 18Ce(NO₃)₃(aq) + 18Co(NO₃)₂(aq) + 100C₂H₅NO₂ + 117O₂ = 18(CoO·CeO₂) + 95N₂ + 200CO₂ + (250H₂O)

N	n(AN)/ n(MeN)	φ	Phase composition		Ni	۸m	р	2	П		
			Distuald/Compated4			1N1,	AIII.	$(C_{2}O)$	$\begin{pmatrix} a \\ (C_2 O_1) \end{pmatrix}$		
			Kietveld/Corrected [*] ,			W170	INIO [°] ,	$(CeO_2),$	$(CeO_2),$	(INIO),	(INI),
					N 1.	(IGA ³)	W1%0	nm	A	nm	nm
			CeO_2	NiO	N1						
Fuel – glycine											
1	-	0.72	79/67	21/33	0	0	12	6.5	5.4190	6.4	—
21	-	1	71/67	24/32	5/1	1.4	8	35.2	5.4112	29.1	18.7
3-11	_	1.25	70/67	30/33	0	0	3	29.9	5.4105	25.9	_
3-21,2			72/67	8/24	20/9	8.9	16	26.8	5.4120	13.0	17.0
4-1 ²		1.4	72/67	23/32	5/1	1.1	9	20.0	5.4154	13.4	13.1
4-21	_		70/67	30/33	0	0	3	25.9	5.4111	22.1	_
5-1 ¹		1.5	72/67	21/31	7/2	1.6	10	18.2	5.4149	9.8	8.9
5-21,3	1 –		75/67	9/29	16/4	4.1	20	21.1	5.4141	7.7	14.3
6-1		2	73/67	27/33	0	0	6	7.0	5.4194	6.1	_
6-23	1 –		79/67	0/29	21/4	3.6	29	9.5	5.4185	_	4.8
7	_	2.5	74/67	26/33	0	0	7	4.5	5.4188	4.7	_
81	1.54	1.6	70/67	23/32	7/1	0.5	9	28.8	5.4099	21.1	3.9
9-1	0.77	2.22	73/67	27/33	0	0	6	8.8	5.4189	6.7	_
9-2 ³			81/67	0/32	19/1	1.1	32	10.2	5.4178	_	3.5
Fuel – urea											
103	-	1	77/67	23/33	0/0	0	10	6.6	5.4093	17.0	_
111,3	_	2	71/67	11/21	18/12	11.7	10	33.3	5.4110	11.2	25.7
121,3	_	3	71/67	19/no data	10/no data	No data	No data	15.3	5.4133	10.4	7.6

Table S1. Data on the phase composition and crystallinity of the synthesized Ce-Ni-O systems.

Note: ¹the sample contains traces of the CeNiO₃ phase; ²the sample left in the beaker; ³immediately after the completion of the combustion process, the beaker was covered with a Petri dish to prevent oxidation of solid products; ⁴taking into account amorphous nickel oxide and TGA results; ⁵was calculated from the weight gain of the sample during heating, equal to the mass of oxygen involved in the oxidation of nickel according to the equation $2Ni + O_2 = 2NiO$; ⁶the amount of amorphous NiO is equal to the difference between the total amount (according to stoichiometry, no more than 33 wt%) and crystalline (determined by the Rietveld method); n(AN) is the number of moles of ammonium nitrate; n(MeN) is the number of moles of cerium and nickel nitrates; φ is the fuel-to-oxidizer ratio; the ratio of weighted (R_{wp}) and expected (R_e) R-factors was 0.97–1.12, which characterizes goodness of fit (if the square value is equal to one or constant, the refinement procedure is completed).

Figure S1. Reproduction of X-ray diffraction patterns of Ce–Ni oxide system obtained by glycine-nitrate combustion at $\phi=2$ with a covering.

φ	NiO, wt%
1.25	32.9
1.4	33.3
1.5*	32.8
2*	33.7

Table S2. The actual NiO content in Ce-Ni-O according to the EDX analysis.

Figure S2. N₂ adsorption-desorption isotherms and the pore size distribution.

Figure S3. Modelling of TPR data for samples a) 1, b) 2 (coding of Table 1), where α , β , γ , ε peaks in Figure 8*a* correspond respectively to amorphous NiO, fine particles of nickel oxide, the same oxide strongly interacting with ceria (or large particles) and a solid solution of NiO. The values of parameters are given in Table S2.

Sample 1 (coding in Table			
1)			
Parameter	Value	Error, %	
k_{α}^{0} *	0.092	1	
k ⁰ _β	0.041	1	
k_{γ}^{0}	38	1	
Eact, α^{**}	129 kJ/mol	0.3	
Eact, _β	71 kJ/mol	0.1	
Eact, γ	137 kJ/mol	0.3	
f, α***	0.51	0.3	
f, _β	0.41	0.1	
f, _y	0.08	1.1	
Sample 2 (coding in Table			
1)			
Parameter	Value	Error, %	
k_{α}^{0} *	0.084	>100	
$k^0{}_{eta}$	0.98	12.3	
k_{γ}^{0}	0.134	>100	
k ⁰ ε	0.0057	9.8	
Eact, α^{**}	149 kJ/mol	>100	
Eact, _β	115 kJ/mol	2.1	
Eact, y	139 kJ/mol	>100	
Eact, ε	73 kJ/mol	29	
f, α^{***}	0.49	>100	
f, _β	0.21	15.8	
f, _y	0.15	>100	
f, e	0.15	22	

Table S3. Values of parameters for TPR modelling. Data fitting done with ModEst software (Profmath OY).

*Pre-exponential factor in temperature dependent reduction of the phase corresponding to α peak, etc, with the mean T of 400°C.

**Activation energy in temperature dependent reduction of the phase corresponding to α peak, etc.

***Fraction of the phase corresponding to α peak, etc.

Table S4. H₂-TPR results.

Sample	φ	mmol H ₂ /g _{cat}	H ₂ /Ni or H ₂ /Co, mol/mol		
	0.72	6.0	1.3		
	1	4.9	1.1		
Ce-Ni-O	1.5*	3.1	0.8		
	2	6.1	1.4		
	2*	4.9	1.2		
	1*	5.1	1.2		
Ce–Co–O	1.5*	5.0	1.2		
	2*	5.7	1.6		

Figure S4. H₂-TPD spectra for Ce–Ni–O systems prepared at different φ .

Figure S5. Raman spectra.

Figure S6. Dependence of the H₂ formation rate, glycerol (gly) transformation rate, and glycerol conversion into gaseous products on *WHSV* for the Ce–Ni–O systems obtained at various fuel-to-oxidizer ratios.

Figure S7. DTA and DTG curves for spent glycerol steam reforming catalysts. The numbers indicate the ratio of fuel-to-oxidizer.

Figure S8. XRD patterns of the initial (black curves) and spent (pink curves) Ce–Ni–O (a), Ce– Co–O (b) systems obtained by the SCS method at various fuel-to-oxidizer ratios (φ) (obtained using a covering).