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Text S1:

For the first principles calculations 4×3×1 supercell of Cu(100) has been considered with ~15 

Å vacuum along the z-direction in order to avoid possible interactions between two periodic 

images. A 3 × 3 × 1 - kpoint mesh has been considered to sample the Brillouin zone for the 

modelled systems. The difference in calculated energies considering 3 × 3 × 1 and 5 × 3 × 1 - 

kpoint mesh were found to be insignificant. To enlarge the electronic wave function, plane 

wave cut-off energy has been set to 470 eV. All the structures have been relaxed until the forces 

and the electronic energies became < 0.02 eV Å–1 and < 10–4 eV, respectively. The adsorption 

energy ( ) of the intermediates were calculated considering the following equation (1),𝐸𝑎𝑑

(1)𝐸𝑎𝑑 =  𝐸𝑠𝑙𝑎𝑏 + 𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 ‒ (𝐸𝑠𝑙𝑎𝑏 +  𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒)

Here, ,  and   are the total energy of surface with adsorbed 𝐸𝑠𝑙𝑎𝑏 + 𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 𝐸𝑠𝑙𝑎𝑏 𝐸𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒

species, single point energy of pristine surface and adsorbate, respectively. The interaction 

energy ( ) of CO2 with additives are calculated considering the following equation (2),𝐸𝑖𝑛𝑡

(2)
𝐸𝑖𝑛𝑡 =  𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 + 𝐶𝑂2 ‒ (𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 +  𝐸𝐶𝑂2

)

Here, ,  and are the calculated single point energies of 
𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 + 𝐶𝑂2 𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒

𝐸𝐶𝑂2

additive+CO2 considered from optimized structure on the Cu(100) surface, additive and CO2, 

respectively.  The computational hydrogen electrode (CHE) model, proposed by Nørskov and 

co-workers, is used to calculate the reaction free energy ( ) at 0 V (vs reversible hydrogen ∆𝐺

electrode, RHE).1,2 The free energy has been calculated considering the following equation (3),

(3)∆𝐺 =  ∆𝐸 +  ∆𝑍𝑃𝐸 ‒ 𝑇∆𝑆



S4

In equation 2,  defines the total energy difference between the initial and the final states, ∆𝐸

 is the change in zero-point energy,  denotes the temperature and  is the change in ∆𝑍𝑃𝐸 𝑇 ∆𝑆

entropy for the reaction. For the entropy correction, 300 K temperature has been considered.  

The zero-point energy can be calculated using the  equation, where  and  defines 
∑1

2
ℎ𝜐𝑖 ℎ 𝜐𝑖

the Planck’s constant and the vibrational frequencies of the intermediates, respectively. Hence, 

all the reaction free energies reported here are corrected for ZPE as well as entropy (

). Furthermore, all the intermediate adsorptions have been considered ∆𝐸 +  ∆𝑍𝑃𝐸 + 𝑇∆𝑆

stable on the basis of absence of negative vibrational frequencies. The charge density 

differences (CDD) ( ) have be calculated following equation 3 and plotted using 𝜌𝐶𝐷𝐷

visualization for electronic and structural analysis (VESTA) software.3

𝜌𝐶𝐷𝐷 = 𝜌𝑡𝑜𝑡𝑎𝑙 ‒ ∑
𝑖

𝜌𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠
𝑖

Where,  is the total charge density of the surface with additives and is the 𝜌𝑡𝑜𝑡𝑎𝑙 𝜌𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠
𝑖

charge density of the individual fragments. Moreover, we have also calculated Bader atomic 

charges for some of the important intermediates using Henkelman code with the near-grid 

algorithm refine-edge method.4,5 The noncovalent interactions (NCI) have been analysed using 

Multiwfn software and visualized using the VMD program.6-10 The implicit solvation was 

calculated using VASPsol, a software package that incorporates solvation into VASP within a 

self-consistent continuum model.11,12
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Fig. S1. Charge density difference (CDD) plot of Cu(100), urea@Cu and formamide@Cu 

surfaces. Here, magenta/green colour indicates electron density accumulation/depletion.  
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Fig. S2. Projected density of states (PDOS) of d and s orbitals of Cu on (a) Cu(100), (b) 

formamide@Cu and (c) urea@Cu surfaces.
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Fig. S3. Adsorption patterns of the considered CO2 hydrogenation reaction intermediates on 

the Cu(100) surface: (a) *CO2, (b) *COOH, (c) *CO, (d) *CHO (e) *COH, (f) *CO-*CO, (g) 

*CO-*CHO, (h) *CHO-*CHO, (i) *H2O, (j) *OH, (k) *O and (l) *H.
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Fig. S4. Adsorption patterns of the considered CO2 hydrogenation reaction intermediates on 

the formamide@Cu(100) surface: (a) *CO2, (b) *COOH, (c) *CO, (d) *CHO (e) *COH, (f) 

*CO-*CO, (g) *CO-*CHO, (h) *CHO-*CHO, (i) *H2O, (j) *OH, (k) *O and (l) *H.
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Fig. S5. Adsorption patterns of the considered CO2 hydrogenation reaction intermediates on 

the urea@Cu(100) surface: (a) *CO2, (b) *COOH, (c) *CO, (d) *CHO (e) *COH, (f) *CO-

*CO, (g) *CO-*CHO, (h) *CHO-*CHO, (i) *CHO-*CHOH, (j) *CHCHO, (k) *CH2CHO and 

(l) *CH3CHO.
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Fig. S6. Adsorption patterns of the considered CO2 hydrogenation reaction intermediates on 

the urea@Cu surface: (a) *CH2CH2O, (b) *CH3CH2O, (c) *CH3CHOH, (d) *CH3CH2OH, (e) 

*CH2CHOH, (f) *CH2CH and (g) *CH2CH2, (h) *H2O, (i) *COCOH, (j) *CCO, (k) *CHCO 

and (l) *CHCOH.
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Fig. S7. Adsorption patterns of the considered CO2 hydrogenation reaction intermediates on 

the urea@Cu surface: (a) *CCH, (b) *CCH2, (c) *O and (d) *H.

Fig. S8. Non-covalent interactions (NCI) plot of (a) CO2 on formamide@Cu(100) (b) CO2 on 

urea@Cu(100) and (c) CH2CH on urea@Cu(100) surfaces.
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Fig. S9. Adsorption patterns of *CO-*CO intermediate in gas and solvent phase on (a) Cu(100) 

surface (b) formamide@Cu (c) urea@Cu surface.
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Fig. S10. Kinetic barrier for the formation of (a) *CHO, (b) *COH, (c) *CHO-*CHO and (d) 

*CO-*CHO on all the considered surfaces in gas phase. All the energies are in eV.
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Table S1. Adsorption energies (eV) of all the intermediate for the formation of ethanol and 

ethylene on the urea@Cu(100) surface. The values in bracket represent the calculated 

adsorption energy in solvent medium.

Adsorbate Urea@Cu
eV Adsorbate Urea@Cu

eV

*CHOHCHO - 2.84 (- 2.49) *COCOH - 5.70 (- 5.45)

*CHCHO - 5.18 (- 5.72) *CCO - 6.30 (- 5.96)

*CH2CHO - 2.94 (- 2.92) *CHCO - 3.53 (- 3.47)

*CH3CHO - 0.92 (-0.62) *CHCOH - 6.10 (-5.79)

*CH3CHOH - 2.09 (- 2.01) *CCH2 - 3.91 (- 3.71)

*CH2CH2O - 5.21 (- 5.49) *CH3CH2OH - 1.04 (- 0.60)

*CH3CH2O - 3.17 (- 3.11) *CH2CH - 3.12 (- 3.55)

*CH2CHOH - 1.14 (- 0.95) *CH2CH2 - 1.09 (- 1.28)
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