Supporting Information

For

Mechanistic studies on catalytic alkane oxidation by the Murahashi's aldehyde/O₂/copper(II) system

Kohei Yamaguchi, Yuya Uemura, Hideki Sugimoto, Rin Ito, Yuma Morimoto and Shinobu Itoh *

Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Contents

Table S1. Oxidation of cyclohexane by $O_2/1/$ PhCHO system in the different solvent systems.	2
Table S2. Comparison of product distribution pattern before and after quenching the reaction PPh ₃ .	n with 2
Fig. S1. ORTEP drawings of Cu ^{II} -complexes 1–5.	3
Table S3. Summary of the X-ray crystallographic data of 1 and 2.	4
Table S4. Summary of the X-ray crystallographic data of 3 and 4.	5
Table S5. Summary of the X-ray crystallographic data of 5.	6
Fig. S2. Cyclic voltammograms of Cu ^{II} -complexes.	7
Table S6. Acyl radical trapping experiment using CCl4.	7
Fig. S3. Acyl radical trapping experiment using acrylonitrile.	8
Fig. S4. Acyl radical Trapping Experiment Using TEMPO.	9
Fig. S5. UV-vis spectral change observed in the reaction of 1 with <i>m</i> -CBA.	10
Fig. S6. ESI-MS spectrum of the reaction mixture of 1 and <i>m</i> -CPBA.	11
Fig. S7. Oxidation of cyclohexane by <i>m</i> -CPBA in the presence of a catalytic amount of Cu^{II} -conunder N_2 atmosphere.	mplex 12
Fig. S8. Titration of perbenzoic acid generated in aerobic oxidation of benzaldehyde.	14
Fig. S9. GC-MS analysis of the methane oxidation reaction.	15

	Me_{6} tren)(CH ₃ CN)](ClO ₄) ₂ PhCHO (0.2 M) /CH ₂ Cl ₂ = 3/2 or CH ₃ CN	$\frac{OH}{V/CCI_4 = 3/2}$	+	
СуН	under <mark>O</mark> 2, 40°C, 3 h	н А	к	L CyCl
Calvert		Yield/m	M^{a} (%) b	
Solvent	Α	K	L	CyCl
CH ₃ CN/CH ₂ Cl ₂	11 (51%)	9.5 (44%)	0.4 (1%)	0.6 (3%)
CH ₃ CN/CCl ₄	5.0 (43%)	4.2 (37%)	0.3 (3%)	2.0 (17%)

Table S1. Oxidation of cyclohexane by $O_2/1$ / PhCHO system in the different solvent systems.

Reaction conditions: [1] = 0.2 mM, [PhCHO] = 0.2 M, [CyH] = 2.0 M at 40°C under O₂. ^{*a*} The amount of the products are determined by GC-FID using calibration curves of the products. ^{*b*} Products ratio (%) = $100 \times [X]/[P]$ (P = A + K + L + CyCl, X = A, K, L or CyCl).

Table S2. Comparison of product distribution pattern before and after quenching the reaction with PPh₃.

\frown	[Cu(Me ₆ tren)(CH ₃ CN)](ClO ₄) ₂ (C PhCHO (0.2 M)	0.2 mM)			
	$CH_3CN/CH_2Cl_2 = 3/2$, under O_2	, 40°C			
СуН	3 h	Α	к	L CyCl	
Quanahar		Yield/m M^a (%) ^b			
Quelicitei	Α	K	L	Cy ⁶ Cl	
	11(51%)	9.5 (44%)	0.4 (1%)	0.6 (3%)	
PPh ₃	12 (54%)	9.1 (41%)	0.3 (2%)	0.7 (3%)	

Reaction conditions: [1] = 0.2 mM, [PhCHO] = 0.2 M, [CyH] = 2.0 M in CH₃CN/CH₂Cl₂ (v/v = 3/2) at 40°C for 3 h under O₂. ^{*a*} The amount of the products are determined by GC-FID using calibration curves of the products. ^{*b*} Product ratio (%) = $100 \times [X]/[P]$ (P = A + K + L + CyCl, X = A, K, L or CyCl)

Fig. S1 ORTEP drawings of Cu^{II}-complexes 1–5 showing 50% probability thermal-ellipsoids. Hydrogen atoms and counter cations are omitted for clarity.

Compound	1 [Cu(Me6tren)(CH3CN)](ClO4)2	2 [Cu(TMG3tren)(CH3CN)](BPh4)2
Empirical formula	$C_{14}H_{33}N_5CuCl_2O_8$	$C_{71}H_{91}B_2CuN_{11}$
Formula weight	533.89	1183.70
Temperature/K	296	115
Crystal system	monoclinic	triclinic
Space group	$P2_1/n$	P-1
a/Å	9.7458(9)	12.9525(9)
b/Å	15.2404(14)	13.3361(11)
c/Å	15.8334(14)	20.9485(14)
$\alpha/^{\circ}$	90	83.572(6)
β/°	91.303(6)	78.793(5)
γ/°	90	66.559(5)
Volume/Å ³	2351.1(4)	3254.2(4)
Ζ	4	2
$\rho_{calc}g/cm^3$	1.392	1.208
μ/mm^{-1}	1.196	0.386
F(000)	1028	1266
Crystal size/mm ³	0.1 imes 0.1 imes 0.1	0.1 imes 0.1 imes 0.1
Radiation	MoK α ($\lambda = 0.71075$)	MoKa ($\lambda = 0.71075$)
2Θ range for data collection/°	3.71 to 54.964	3.474 to 54.97
Index ranges	$-12 \le h \le 12, -19 \le k \le 19, -18 \le l \le 20$	$-16 \le h \le 16, -17 \le k \le 17, -23 \le l \le 27$
Reflections collected	22294	32124
Independent reflections	5393 [$R_{int} = 0.0305, R_{sigma} = 0.0258$]	14856 [$R_{int} = 0.0254, R_{sigma} = 0.0358$]
Data/restraints/parameters	5393/0/287	14856/0/779
Goodness-of-fit on F ²	0.985	1.088
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0740, wR_2 = 0.2078$	$R_1 = 0.0404, wR_2 = 0.0986$
Final R indexes [all data]	$R_1 = 0.0861, wR_2 = 0.2204$	$R_1 = 0.0582, wR_2 = 0.1127$
Largest diff. peak/hole / e Å-3	2.04/-1.32	0.39/-0.53

 Table S3. Summary of the X-ray crystallographic data of 1 and 2.

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w} = [\sum (w(|F_{o}| - |F_{c}|)^{2} / \sum wF_{o}^{2})]^{1/2}$

Compound	3 [Cu(Me ₂ -pp3)(CH ₃ CN)](ClO ₄) ₂	4 [Cu(Me ₂ -unspenp)(CH ₃ CN)](ClO ₄) ₂
Empirical formula	$C_{19}H_{27}N_5CuCl_2O_8$	$C_{18}H_{25}N_5CuCl_2O_8$
Formula weight	587.89	573.87
Temperature/K	115	115
Crystal system	monoclinic	monoclinic
Space group	$P2_1/c$	C2/c
a/Å	11.4909(12)	20.0899(17)
b/Å	9.9244(12)	10.2143(10)
c/Å	21.336(2)	23.1418(18)
$\alpha/^{\circ}$	90	90
β/°	99.433(7)	101.316(7)
γ/°	90	90
Volume/Å ³	2400.2(5)	4656.5(7)
Ζ	4	8
$ ho_{calc}g/cm^3$	1.627	1.637
μ/mm^{-1}	1.188	1.223
F(000)	1212	2360
Crystal size/mm ³	0.1 imes 0.1 imes 0.1	0.1 imes 0.1 imes 0.1
Radiation	MoK α ($\lambda = 0.71075$)	MoKa ($\lambda = 0.71075$)
2Θ range for data collection/°	3.594 to 54.972	3.59 to 54.964
Index ranges	$-14 \le h \le 14, -12 \le k \le 12, -27 \le l \le 24$	$-26 \le h \le 25, -13 \le k \le 13, -30 \le l \le 29$
Reflections collected	21337	22050
Independent reflections	5492 [$R_{int} = 0.0714$, $R_{sigma} = 0.0648$]	5333 [$R_{int} = 0.0134$, $R_{sigma} = 0.0121$]
Data/restraints/parameters	5492/0/319	5333/0/315
Goodness-of-fit on F ²	1.092	1.084
Final R indexes [I>=2 σ (I)]	$R_1 = 0.1017, wR_2 = 0.2503$	$R_1 = 0.0289, wR_2 = 0.0792$
Final R indexes [all data]	$R_1 = 0.1222, wR_2 = 0.2656$	$R_1 = 0.0312, wR_2 = 0.0830$
Largest diff. peak/hole / e Å ⁻³	1.77/-1.70	0.71/-1.01

 Table S4. Summary of the X-ray crystallographic data of 3 and 4.

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w} = [\sum (w(|F_{o}| - |F_{c}|)^{2} / \sum wF_{o}^{2})]^{1/2}$

Empirical formula $C_{20}H_{21}N_3CuCl_2O_8$ Formula weight 593.86 Temperature/K 115 Crystal system monoclinic Space group P_{21} a/Å 10.2096(11) b/Å 9.5739(10) c/Å 12.8306(11) a'° 90 $\beta/^{\circ}$ 106.747(7) γ'° 90 $\chi/^{\circ}$ 90 Volume/Å ³ 1200.9(2) Z 2 ρ_{eateg}/cm^3 1.050 μ/mm^{-1} 0.971 F(000) 391 Crystal size/mm ³ $0.1 \times 0.1 \times 0.1$ Radiation MoK $\alpha (\lambda = 0.71075)$ 20 range for data collection/° 5.394 to 54.964 Index ranges	Compound	5 [Cu(TPA)(CH ₃ CN)](ClO ₄) ₂
Formula weight593.86Temperature/K115Crystal systemmonoclinicSpace group P_{2_1} $a/Å$ 10.2096(11) $b/Å$ 9.5739(10) $c/Å$ 12.8306(11) a'^o 90 $\beta/^o$ 106.747(7) γ'^o 90 δ/a 1200.9(2) Z 2 ρ_{caleg}/cm^3 1.050 μ/mm^{-1} 0.971 $F(000)$ 391Crystal size/mm³0.1 × 0.1 × 0.1RadiationMoK a ($\lambda = 0.71075$)2 Θ range for data collection/°5.394 to 54.964Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections5272 [Rint = 0.0262, Rigma = 0.0389]Data/restraints/parameters5272/1/326Goodness-of-fit on F^2 1.040Final R indexes [I>= 2σ (I)] $R_1 = 0.0369, wR_2 = 0.0895$ Final R indexes [all data] $R_1 = 0.0421, wR_2 = 0.0918$ Largest diff, peak/hole / e Å-30.61/-0.46	Empirical formula	$C_{20}H_{21}N_5CuCl_2O_8$
Temperature/K115Crystal systemmonoclinicSpace group P_1 $a/Å$ 10.2096(11) $b/Å$ 9.5739(10) $c/Å$ 12.8306(11) $a/°$ 90 $\beta/°$ 106.747(7) $\gamma/°$ 90 $\beta/°$ 106.747(7) $\gamma/°$ 90Volume/ų1200.9(2) Z 2 $\rho_{ealcg}/cm³$ 1.050 μ/mm^{-1} 0.971 $F(000)$ 391Crystal size/mm³0.1 × 0.1 × 0.1RadiationMoK α (λ = 0.71075)2 Θ range for data collection/°5.394 to 54.964Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections 5272 [R _{int} = 0.0262, R _{sigma} = 0.0389]Data/restraints/parameters $5272/1/326$ Goodness-of-fit on F²1.040Final R indexes [I>=2 σ (I)] $R_1 = 0.0369, wR_2 = 0.0895$ Final R indexes [all data] $R_1 = 0.0421, wR_2 = 0.0918$ Largest diff, peak/hole / e Å-³0.61/-0.46	Formula weight	593.86
Crystal system monoclinic Space group P_1 a/Å 10.2096(11) b/Å 9.5739(10) c/Å 12.8306(11) a/° 90 $\beta/°$ 106.747(7) $\gamma/°$ 90 $\gamma/°$ 90 Volume/Å ³ 1200.9(2) Z 2 ρ_{ealeg}/cm^3 1.050 μ/mm^{-1} 0.971 F(000) 391 Crystal size/mm ³ 0.1 × 0.1 × 0.1 Radiation MoKa ($\lambda = 0.71075$) 2 Θ range for data collection/° 5.394 to 54.964 Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected 11450 Independent reflections 5272 [R _{int} = 0.0262, R _{sigma} = 0.0389] Data/restraints/parameters 5272/1/326 Goodness-of-fit on F ² 1.040 Final R indexes [I>=2 σ (I)] $R_1 = 0.0369, wR_2 = 0.0895$ Final R indexes [all data] $R_1 = 0.0421, wR_2 = 0.0918$ Largest diff, peak/hole / e Å ⁻³ 0.61/-0.46	Temperature/K	115
Space group $P2_1$ $a/Å$ $10.2096(11)$ $b/Å$ $9.5739(10)$ $c/Å$ $12.8306(11)$ a'^o 90 $\beta/^o$ $106.747(7)$ γ'^o 90 γ/o 90 $Volume/Å^3$ $1200.9(2)$ Z 2 $\rho_{calc}g/cm^3$ 1.050 μ/mm^{-1} 0.971 $F(000)$ 391 $Crystal size/mm^3$ $0.1 \times 0.1 \times 0.1$ $Radiation$ $MoKa (\lambda = 0.71075)$ 2Θ range for data collection/o 5.394 to 54.964 $1dex$ ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected 11450 Independent reflections 5272 [$R_{int} = 0.0262, R_{sigma} = 0.0389$]Data/restraints/parameters $5272/1/326$ Goodness-of-fit on F^2 1.040 Final R indexes [I>= 2σ (I)] $R_1 = 0.0369, wR_2 = 0.0895$ Final R indexes [all data] $R_1 = 0.0421, wR_2 = 0.0918$ Largest diff. peak/hole / e Å ⁻³ $0.61/-0.46$	Crystal system	monoclinic
a/Å10.2096(11)b/Å9.5739(10)c/Å12.8306(11) a'° 90 β'° 106.747(7) γ'° 90Volume/Å31200.9(2)Z2 $\rho_{calc}g/cm^3$ 1.050 μ/mm^{-1} 0.971F(000)391Crystal size/mm³0.1 × 0.1 × 0.1RadiationMoK α (λ = 0.71075)2 Θ range for data collection/°5.394 to 54.964Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections5272 [Rint = 0.0262, Risigma = 0.0389]Data/restraints/parameters $52722[Nint = 0.0262, Risigma = 0.0389]$ Goodness-of-fit on F²1.040Final R indexes [I>=2 σ (I)]R_1 = 0.0369, wR_2 = 0.0918Largest diff. peak/hole / e Å-30.61/-0.46	Space group	P21
b/Å9.5739(10) $c/Å$ 12.8306(11) a'° 90 $\beta/^{\circ}$ 106.747(7) $\gamma/^{\circ}$ 90Volume/Å ³ 1200.9(2) Z 2 ρ_{calcg/cm^3} 1.050 μ/mm^{-1} 0.971 $F(000)$ 391Crystal size/mm ³ $0.1 \times 0.1 \times 0.1$ RadiationMoKa ($\lambda = 0.71075$)2 Θ range for data collection/°5.394 to 54.964Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections5272 [R _{int} = $0.0262, R_{sigma} = 0.0389$]Data/restraints/parameters $5272/1/326$ Goodness-of-fit on F ² 1.040Final R indexes [I>=2 σ (I)] $R_1 = 0.0369, wR_2 = 0.0895$ Final R indexes [all data] $R_1 = 0.0421, wR_2 = 0.0918$ Largest diff. peak/hole / e Å ⁻³ 0.61/-0.46	a/Å	10.2096(11)
c/Å12.8306(11) a'° 90 β'° 106.747(7) γ'° 90Volume/Å31200.9(2)Z2 ρ_{ealeg}/cm^3 1.050 μ/mm^{-1} 0.971F(000)391Crystal size/mm30.1 × 0.1 × 0.1RadiationMoK α (λ = 0.71075)2 Θ range for data collection/°5.394 to 54.964Index ranges-13 ≤ h ≤ 13, -12 ≤ k ≤ 12, -15 ≤ 1 ≤ 16Reflections collected11450Independent reflections5272 [Rint = 0.0262, Rsigma = 0.0389]Data/restraints/parameters5272/1/326Goodness-of-fit on F²1.040Final R indexes [I>=2 σ (I)]R1 = 0.0369, wR2 = 0.0895Final R indexes [all data]R1 = 0.0421, wR2 = 0.0918Largest diff. peak/hole / e Å-30.61/-0.46	b/Å	9.5739(10)
$\alpha/^{\circ}$ 90 $\beta/^{\circ}$ 106.747(7) $\gamma/^{\circ}$ 90Volume/Å ³ 1200.9(2)Z2 ρ_{ealeg}/cm^3 1.050 μ/mm^{-1} 0.971 $F(000)$ 391Crystal size/mm ³ $0.1 \times 0.1 \times 0.1$ Radiation $MoK\alpha (\lambda = 0.71075)$ 2 Θ range for data collection/°5.394 to 54.964Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections $5272 [R_{int} = 0.0262, R_{sigma} = 0.0389]$ Data/restraints/parameters $5272/1/326$ Goodness-of-fit on F ² 1.040Final R indexes [I>= 2σ (I)] $R_1 = 0.0369, wR_2 = 0.0895$ Final R indexes [all data] $R_1 = 0.0421, wR_2 = 0.0918$ Largest diff. peak/hole / e Å ⁻³ 0.61/-0.46	c/Å	12.8306(11)
$\beta/^{\circ}$ 106.747(7) $\gamma/^{\circ}$ 90Volume/Å ³ 1200.9(2)Z2 $\rho_{calc}g/cm^{3}$ 1.050 μ/mm^{-1} 0.971 $F(000)$ 391Crystal size/mm ³ $0.1 \times 0.1 \times 0.1$ RadiationMoK α ($\lambda = 0.71075$)2 Θ range for data collection/°5.394 to 54.964Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections5272 [Rint = 0.0262, Rsigma = 0.0389]Data/restraints/parameters5272/1/326Goodness-of-fit on F ² 1.040Final R indexes [I>= 2σ (I)]R ₁ = 0.0369, wR ₂ = 0.0895Final R indexes [all data]R ₁ = 0.0421, wR ₂ = 0.0918Largest diff. peak/hole / e Å ⁻³ 0.61/-0.46	α/°	90
$\gamma/^{\circ}$ 90Volume/Å31200.9(2)Z2 ρ_{ealeg}/cm^3 1.050 μ/mm^{-1} 0.971F(000)391Crystal size/mm30.1 × 0.1 × 0.1RadiationMoK α ($\lambda = 0.71075$)2 Θ range for data collection/°5.394 to 54.964Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections 5272 [R _{int} = 0.0262, R _{sigma} = 0.0389]Data/restraints/parameters $5272/1/326$ Goodness-of-fit on F²1.040Final R indexes [I>= 2σ (I)]R ₁ = 0.0369, wR ₂ = 0.0895Final R indexes [all data]R ₁ = 0.0421, wR ₂ = 0.0918Largest diff. peak/hole / e Å-30.61/-0.46	β/°	106.747(7)
Volume/Å31200.9(2)Z2 ρ_{calcg}/cm^3 1.050 μ/mm^{-1} 0.971F(000)391Crystal size/mm^3 $0.1 \times 0.1 \times 0.1$ RadiationMoK α ($\lambda = 0.71075$)2 Θ range for data collection/°5.394 to 54.964Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections 5272 [Rint = 0.0262, R _{sigma} = 0.0389]Data/restraints/parameters $5272/1/326$ Goodness-of-fit on F ² 1.040Final R indexes [I>= 2σ (I)]R ₁ = 0.0369, wR ₂ = 0.0895Final R indexes [all data]R ₁ = 0.0421, wR ₂ = 0.0918Largest diff. peak/hole / e Å-30.61/-0.46	$\gamma/^{\circ}$	90
Z2 $\rho_{calc}g/cm^3$ 1.050 μ/mm^{-1} 0.971 $F(000)$ 391Crystal size/mm^3 $0.1 \times 0.1 \times 0.1$ RadiationMoKa ($\lambda = 0.71075$)2 Θ range for data collection/°5.394 to 54.964Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections5272 [R_{int} = 0.0262, R_{sigma} = 0.0389]Data/restraints/parameters5272/1/326Goodness-of-fit on F ² 1.040Final R indexes [I>= 2σ (I)]R_1 = 0.0369, wR_2 = 0.0895Final R indexes [all data]R_1 = 0.0421, wR_2 = 0.0918Largest diff. peak/hole / e Å-30.61/-0.46	Volume/Å ³	1200.9(2)
$\begin{array}{lll} \rho_{calc}g/cm^{3} & 1.050 \\ \mu/mm^{-1} & 0.971 \\ F(000) & 391 \\ Crystal size/mm^{3} & 0.1 \times 0.1 \times 0.1 \\ Radiation & MoK\alpha (\lambda = 0.71075) \\ 2\Theta range for data collection/° & 5.394 to 54.964 \\ Index ranges & -13 \leq h \leq 13, -12 \leq k \leq 12, -15 \leq 1 \leq 16 \\ Reflections collected & 11450 \\ Independent reflections \\ Data/restraints/parameters & 5272/1/326 \\ Goodness-of-fit on F^{2} & 1.040 \\ Final R indexes [I>=2\sigma (I)] & R_{1} = 0.0369, wR_{2} = 0.0895 \\ Final R indexes [all data] & R_{1} = 0.0421, wR_{2} = 0.0918 \\ Largest diff. peak/hole / e Å^{-3} & 0.61/-0.46 \\ \end{array}$	Ζ	2
$\begin{array}{lll} \mu/mm^{-1} & 0.971 \\ F(000) & 391 \\ Crystal size/mm^3 & 0.1 \times 0.1 \times 0.1 \\ Radiation & MoK \alpha (\lambda = 0.71075) \\ 2\Theta range for data collection/^{\circ} & 5.394 to 54.964 \\ Index ranges & -13 \leq h \leq 13, -12 \leq k \leq 12, -15 \leq 1 \leq 16 \\ Reflections collected & 11450 \\ Independent reflections & 5272 [R_{int} = 0.0262, R_{sigma} = 0.0389] \\ Data/restraints/parameters & 5272/1/326 \\ Goodness-of-fit on F^2 & 1.040 \\ Final R indexes [I>=2\sigma (I)] & R_1 = 0.0369, wR_2 = 0.0895 \\ Final R indexes [all data] & R_1 = 0.0421, wR_2 = 0.0918 \\ Largest diff. peak/hole / e Å^{-3} & 0.61/-0.46 \\ \end{array}$	$ ho_{cale}g/cm^3$	1.050
$F(000)$ 391 Crystal size/mm³ $0.1 \times 0.1 \times 0.1$ Radiation $MoK\alpha (\lambda = 0.71075)$ 2Θ range for data collection/° 5.394 to 54.964 Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected 11450 Independent reflections 5272 [R _{int} = 0.0262 , R _{sigma} = 0.0389]Data/restraints/parameters $5272/1/326$ Goodness-of-fit on F² 1.040 Final R indexes [I>= 2σ (I)] $R_1 = 0.0369$, wR2 = 0.0895 Final R indexes [all data] $R_1 = 0.0421$, wR2 = 0.0918 Largest diff. peak/hole / e Å ⁻³ $0.61/-0.46$	μ/mm^{-1}	0.971
Crystal size/mm3 $0.1 \times 0.1 \times 0.1$ RadiationMoKa ($\lambda = 0.71075$)2 Θ range for data collection/° 5.394 to 54.964 Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections 5272 [R _{int} = 0.0262 , R _{sigma} = 0.0389]Data/restraints/parameters $5272/1/326$ Goodness-of-fit on F2 1.040 Final R indexes [I>= 2σ (I)]R ₁ = 0.0369 , wR ₂ = 0.0895 Final R indexes [all data]R ₁ = 0.0421 , wR ₂ = 0.0918 Largest diff. peak/hole / e Å ⁻³ $0.61/-0.46$	F(000)	391
RadiationMoK α ($\lambda = 0.71075$)2 Θ range for data collection/°5.394 to 54.964Index ranges $-13 \le h \le 13, -12 \le k \le 12, -15 \le 1 \le 16$ Reflections collected11450Independent reflections5272 [R _{int} = 0.0262, R _{sigma} = 0.0389]Data/restraints/parameters5272/1/326Goodness-of-fit on F ² 1.040Final R indexes [I>=2 σ (I)]R ₁ = 0.0369, wR ₂ = 0.0895Final R indexes [all data]R ₁ = 0.0421, wR ₂ = 0.0918Largest diff. peak/hole / e Å ⁻³ 0.61/-0.46	Crystal size/mm ³	0.1 imes 0.1 imes 0.1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Radiation	ΜοΚα (λ = 0.71075)
$ \begin{array}{ll} \mbox{Index ranges} & -13 \le h \le 13, -12 \le k \le 12, -15 \le l \le 16 \\ \mbox{Reflections collected} & 11450 \\ \mbox{Independent reflections} & 5272 \ [R_{int} = 0.0262, R_{sigma} = 0.0389] \\ \mbox{Data/restraints/parameters} & 5272/1/326 \\ \mbox{Goodness-of-fit on } F^2 & 1.040 \\ \mbox{Final R indexes [I>=2σ (I)]} & R_1 = 0.0369, wR_2 = 0.0895 \\ \mbox{Final R indexes [all data]} & R_1 = 0.0421, wR_2 = 0.0918 \\ \mbox{Largest diff. peak/hole / e A^{-3}} & 0.61/-0.46 \\ \end{array} $	2Θ range for data collection/°	5.394 to 54.964
Reflections collected 11450 Independent reflections $5272 [R_{int} = 0.0262, R_{sigma} = 0.0389]$ Data/restraints/parameters $5272/1/326$ Goodness-of-fit on F ² 1.040 Final R indexes [I>= 2σ (I)] $R_1 = 0.0369, wR_2 = 0.0895$ Final R indexes [all data] $R_1 = 0.0421, wR_2 = 0.0918$ Largest diff. peak/hole / e Å ⁻³ $0.61/-0.46$	Index ranges	$-13 \le h \le 13, -12 \le k \le 12, -15 \le l \le 16$
Independent reflections $5272 [R_{int} = 0.0262, R_{sigma} = 0.0389]$ Data/restraints/parameters $5272/1/326$ Goodness-of-fit on F ² 1.040 Final R indexes [I>= 2σ (I)] $R_1 = 0.0369, wR_2 = 0.0895$ Final R indexes [all data] $R_1 = 0.0421, wR_2 = 0.0918$ Largest diff. peak/hole / e Å ⁻³ $0.61/-0.46$	Reflections collected	11450
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Independent reflections	5272 [$R_{int} = 0.0262, R_{sigma} = 0.0389$]
Goodness-of-fit on F^2 1.040 Final R indexes [I>=2 σ (I)] $R_1 = 0.0369$, w $R_2 = 0.0895$ Final R indexes [all data] $R_1 = 0.0421$, w $R_2 = 0.0918$ Largest diff. peak/hole / e Å ⁻³ 0.61/-0.46	Data/restraints/parameters	5272/1/326
Final R indexes [I>= 2σ (I)] $R_1 = 0.0369, wR_2 = 0.0895$ Final R indexes [all data] $R_1 = 0.0421, wR_2 = 0.0918$ Largest diff. peak/hole / e Å ⁻³ $0.61/-0.46$	Goodness-of-fit on F ²	1.040
Final R indexes [all data] $R_1 = 0.0421$, $wR_2 = 0.0918$ Largest diff. peak/hole / e Å ⁻³ $0.61/-0.46$	Final R indexes [I>= 2σ (I)]	$R_1 = 0.0369, wR_2 = 0.0895$
Largest diff. peak/hole / e Å ⁻³ 0.61/-0.46	Final R indexes [all data]	$R_1 = 0.0421, wR_2 = 0.0918$
	Largest diff. peak/hole / e Å ⁻³	0.61/-0.46

Table S5. Summary of the X-ray crystallographic data of 5.

 $\overline{{}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w} = \left[\sum (w(|F_{o}| - |F_{c}|)^{2} / \sum wF_{o}^{2})\right]^{1/2}}$

Fig. S2 Cyclic voltammograms of Cu^{II}-complexes (1.0 mM) in CH₃CN containing TBAPF₆ (0.1 M). WE: glassy carbon (GC), CE: Pt wire, PE: Ag/Ag⁺. Sweep rate: 100 mV/s, Solvent: CH₃CN.

Table S6. Acyl radical trapping experiment using CCl₄.

Reaction conditions: $[Cu^{II}$ -complex] = 0.2 mM, [PhCHO] = 0.2 M, at room temperature for 9 days under anaerobic conditions. ^{*a*} The amounts of the products are determined by GC-FID using calibration curves of the products. ^{*b*} In acetonitrile vs. Fc/Fc⁺.

Acyl radical trapping experiment using acrylonitrile

Fig. S3 GC-MS charts of the reaction mixture (black) and the authentic sample (red).

Procedure. PhCHO (100 eq.) and acrylonitrile (100 eq.) were added to an acetonitrile solution (1 mL) of **1** (2 mM). The reaction mixture was stirred for 24 h at room temperature under Ar. After quenching the reaction by passing the reaction mixture through an alumina-column, products were analyzed by GC-MS (Fig. S3).

Discussion. If acyl radical **a** was formed, it might be trapped by acrylonitrile to generate radical intermediate **e** (Scheme S4). Although the BDE of **e** (PhC(O)CH₂**CH**₂**CN**) is not known, it is expected to have a value similar to that of propionitrile (CH₃**CH**₂CN: 94.0 \pm 3.0 kcal mol⁻¹). Therefore, the radical intermediate **e** may abstract hydrogen atom from benzaldehyde (PhC(O)–H: 88.7 \pm 2.6 kcal mol⁻¹ uo, Y.-R. (**2007**). Comprehensive Handbook of Chemical Bond Energies (1st ed.). CRC Press.) to give product **f** and regenerate **e**, making a chain reaction. However, no product **f** was identified at all, suggesting that the effect of aldehyde activation by Cu^{II} is negligible.

Acyl radical Trapping Experiment Using TEMPO

Fig. S4 ¹H-NMR spectra of the reaction mixture (black) and authentic sample of TEMPO-adduct **g** (red) in CD₃CN.

Procedure. PhCHO (100 eq.) and TEMPO (10 eq.) were added to an acetonitrile solution (3 mL) of **1** (2 mM). The reaction mixture was stirred for 14 h at 40°C under Ar. After quenching the reaction by passing the reaction mixture through an alumina-column, products were analyzed by ¹H-NMR. TEMPO-additive was synthesized according to the reported procedure.

Fig. S5 UV-vis spectral change observed in the reaction of **1** (2 mM) with 1 equiv of *m*-CBA in the presence of triethylamine (1 equiv) in CH₃CN at 40°C.

Fig. S6 ESI-MS spectrum of the reaction mixture of 1 and *m*-CPBA (10 equiv) in acetonitrile. Inset: Expanded spectrum and its simulation spectrum. Reaction conditions: [1] = 2 mM, [m-CPBA] = 20 mM at 40 °C under air. The peaks for the *m*-CBA adduct complex at 448.18 may be generated in the mass measurement.

Fig. S7. Oxidation of cyclohexane by *m*-CPBA in the presence of a catalytic amount of Cu^{II}-complex under N₂ atmosphere. Reaction conditions: $[Cu^{II}-complex] = 0.2 \text{ mM}$, [m-CPBA] = 0.2 M, [Cyclohexane] = 2.0 M at 40 °C under N₂. $[P] = \mathbf{A} + 2\mathbf{K} + 2\mathbf{L} + C\mathbf{y}C\mathbf{l}$. The time-dependent yields of each product (A, K, L, and CyCl) are presented in the following tables.

Time/h -		Yield	l/mM ^a	
	Α	K	L	Cy ⁶ Cl
0.5	5.7	2.0	0.41	0.82
1.0	7.5	2.6	0.62	1.1
1.5	21	2.7	1.5	2.0
2.0	26	2.9	2.0	2.3
2.5	29	4.1	2.5	2.7

[Cu(Me₆tren)(CH₃CN)](ClO₄)₂ (1)

T :		Yield	$/\mathrm{m}\mathrm{M}^{a}$	
Time/n –	Α	K	L	Cy ⁶ Cl
0.5	3.8	0.72	0	0.73
1.0	4.5	1.3	0.36	1.5
1.5	7.6	1.5	0.75	1.6
2.0	13	2.3	1.2	2.2
2.5	13	2.6	1.3	2.5

T: /1		Yield	/mM ^a	
1 ime/n	Α	K	L	Cy ⁶ Cl
0.5	2.9	0.75	0	0
1.0	5.7	1.2	0	0
1.5	10	2.1	0.38	0.36
2.0	14	2.7	0.67	0.57
2.5	19	2.6	1.2	0.74

[Cu(pro)(CH₃CN)](ClO₄)₂ (**3**)

$[Cu(Me_2-unspenp)(CH_3CN)](ClO_4)_2 (4)$

Time //		Yield	l/mM ^a	
Time/n	Α	K	L	Cy ⁶ Cl
0.5	2.6	1.5	0	0
1.0	4.2	2.2	0	0
1.5	7.3	2.7	0	0.23
2.0	9.9	3.3	0.85	0.35
2.5	15	5.0	1.2	0.56

		Yield	/mM ^a	
Time/n	Α	K	L	Cy ⁶ Cl
0.5	1.9	0.84	0	0
1.0	2.8	1.2	0	0
1.5	3.9	1.8	0	0
2.0	5.7	2.1	0	0
2.5	5.1	1.7	0	0

[Cu(TPA)(CH₃CN)](ClO₄)₂ (5)

Reaction conditions: $[Cu^{II}] = 0.2 \text{ mM}$, [m-CPBA] = 0.2 M, [Cyclohexane] = 2.0 M at 40 °C under N₂. ^{*a*}The amounts of the products are determined by GC-FID using calibration curves of the products. Titration of perbenzoic acid generated in aerobic oxidation of benzaldehyde.

Fig. S8. Spectroscopic titration of perbenzoic acid by NaI (left) and a time dependent formation perbenzoic acid. Reaction conditions: [PhCHO] = 0.2 M, in CH₃CN, at 40°C, under O₂.

Procedure. To minimize the influence of metal particles, aqua regalis rinsed vials and stirrer bars were employed. PhCHO (0.2 M) was added to acetonitrile (1 mL). After stirring for a certain time, the reaction solution was diluted to 1000-fold, added to 2 mL of acetonitrile solution of sodium iodide (0.1 M), and the UV-vis spectrum was measured. The concentration of peroxide species in the reaction solution was determined by the Lambert-Beer law. The molar absorption coefficient for I_3^- (362 nm) in acetonitrile was the reported value.¹⁴

Oxidation of methane

Fig. S9 (a) GC-MS charts of the final reaction solution of the methane oxidation. Selected ion monitoring: m/z = 31 for CH₃OH, m/z = 29 for HCHO. (b) Mass spectrum at 1.08 min (above) and its simulation spectrum (below).