Electronic Supplementary Information

A two-dimensional MXene-supported CuRu catalyst for efficient electrochemical nitrate reduction to ammonia

Fang Zhao a, Guangxin Li a, Qianqian Hua a, Jianghui Cao a, Jiliang Song a, Liguo Gao a, Tingli Ma c, d, Xuefeng Ren b, * Anmin Liu a, *

a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, China.
E-mail: liuanmin@dlut.edu.cn

b School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
E-mail: renxuefeng@dlut.edu.cn

c Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China.

d Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan.
**Preparation of working electrode**

A homogeneous catalyst ink was created by dissolving 10 mg of the produced Ru-Cu/Cu$_2$O@Ti$_3$C$_2$ catalyst in 1 mL of isopropanol, adding 30 L of 5 wt% Nafion solution, and then sonicating the mixture for 30 minutes. Then, 20 μL of catalyst ink was deposited onto a glassy carbon electrode with a 5 mm diameter and allowed to dry in the open air.

**Electrochemical Measurements**

The electrocatalytic NO$_3$RR and NRR tests were performed on a CHI760E electrochemical workstation in Shanghai, used for the three-electrode test system. Platinum wire as a counter electrode, Ag/AgCl as reference electrode, 0.1 M KOH and 0.1 M KNO$_3$ as electrolyte. 10 mg of catalyst and 30 μL of Nafion solution (5 wt%) were dispersed in 970 μL of isopropanol and sonicated for 1 h to obtain a homogeneous suspension. Then, 20 μL of catalyst dispersion was dropped onto a smooth glassy carbon working electrode (effective area 0.196 cm$^2$), which was naturally dried and used as the working electrode. All potentials obtained in the experiments were converted to reversible hydrogen electrodes (RHE).

Before the electrochemical NO$_3$RR test, high-purity Ar should be introduced into the electrolyte for up to 30 min to ensure complete discharge of dissolved impurity gases, followed by a linear scanning voltammetric curve (LSV) test at a scan rate of 5 mV s$^{-1}$. In this study, NO$_3$RR experiments were conducted utilizing a chrono-current approach (i-t) with a continuous scan at potentials ranging from -0.1 V to -0.8 V (vs. RHE) for 2 hours. Ar was continuously supplied throughout the testing to create a gas protection
barrier. The reproducibility test was carried out by reconstituting the working electrode after each 2-hour NO$_3$RR procedure, and the stability cycle test was carried out by scanning the electrochemical NO$_3$RR procedure using the chrono-current method for 24 hours. Both tests were carried out at optimal potentials. The nitrogen source and protective gas for NRR was N$_2$, the electrolyte was 0.1 M KOH, and the other experimental conditions were as stated above.

**Determination of NH$_3$:** The determination of NH$_3$ was determined by the indophenol blue and spectrophotometric methods in this experiment. 5 g of sodium salicylate and 5 g of sodium tartrate were dissolved in 100 mL of 1 M KOH as color developer (A). Then 5 mL of NaCIO (14% effective chlorine content) was added to 100 mL of deionized water to prepare color developer (B). Finally, as color developer C, 0.2 g sodium nitrosoferricyanide was dissolved in 20 mL of deionized water. The concentrations of 0, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 μg/mL ammonium chloride were prepared as standard solutions. Then, 2 ml of standard solution was added to the test tube, followed by 2 ml of color developer A, 1 ml of color developer B and 0.2 mL of color developer C. The mixed solution was then shaken well. After standing for 1 hour, the hybrid solution was transferred to a cuvette and detected by UV-Vis spectrophotometer. The UV-Vis absorption spectrum was obtained according to the absorbance at 655 nm. The concentration-absorbance curve (Figure S4) was obtained using a series of standard NH$_4$Cl solutions, and was fitted by linear regression, $y = 0.30609x - 0.00644$; $R^2 = 0.9995$.

The following equation calculates the NH$_3$ production rate.
NH₃ production rate = \( \frac{c \times V}{t \times A} \) (1) t is the electrochemical test time (h), and A is the effective geometric area of the working electrode (cm²). Where, c is the measured ammonia concentration and V is the volume (mL).

FE can be calculated by the following equation.

\[ \text{FE} = \frac{8F \times c \times V}{17 \times Q} \] (2),

where one NH₃ molecule requires the production of 8 electrons, F is Faraday's constant, and Q is the amount of electricity consumed in the electrochemical test.

**Determination of N₂H₄**: The color developer is 4g of dimethylbenzaldehyde dissolved in a mixture of 20ml of concentrated hydrochloric acid and 200 ml of ethanol. 1ml of 1000μg/ml hydrazine standard solution was placed in a 100ml volumetric flask and fixed with 0.1 M KOH, followed by the configuration of standard solutions with concentrations of 0.2, 0.4, 0.8, 1.2, 1.8μg/ml, respectively. Add 1.5 mL of standard solution or sample solution into the centrifuge tube, add 1.5ml of color developer, shake to make the color developer fully act, leave it for 1 h, measure the concentration of N₂H₄ in the solution using UV-vis spectrophotometer, and plot the standard curve with absorbance as the y-axis and the concentration of N₂H₄ as the x-axis.
Figure S1  Ru-Cu/Cu$_2$O@Ti$_3$C$_2$ low-magnification EDS spectrum and corresponding elemental distribution

Figure S2  LSV curves of Ru-Cu/Cu$_2$O@Ti$_3$C$_2$-catalyzed NRR
**Figure S3** Ru-Cu/Cu$_2$O@Ti$_3$C$_2$-catalyzed NO$_3$RR: (a) i-t test curve; (b) UV absorbance test of NH$_4^+$ in electrolyte.

**Figure S4** Plotting of standard curve of NH$_3$ in 0.1 M KOH solution.
Figure S5  24-h current density variation of Ru-Cu/Cu$_2$O@Ti$_3$C$_2$-catalyzed NO$_3$RR

Figure S6  Ru-Cu/Cu$_2$O@Ti$_3$C$_2$-catalyzed NRR; (a) i-t test curve; (b) absorbance test of NH$_4^+$ in electrolyte
Figure S7  12-h current density test of Ru-Cu/Cu$_2$O@Ti$_3$C$_2$-catalyzed NRR