Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

1	
2	Supplementary Information for
3	
4	Bridge-type Mn-O-Mn sites promoted catalytic methane oxidation and carbonate
5	desorption over Mn-based oxides
6	Jiacheng Xu ^{1,2} , Tiantian Zhang ¹ , Yan Sun ¹ , Shiyu Fang ¹ , Zuliang Wu ^{1,3} , Erhao Gao ^{1,3} , Jiali
7	Zhu ^{1,3} , Wei Wang ^{1,3} , Lianxin Dai ⁴ , Weihua Liu ⁴ , Buhe Zhang ⁴ , Junwei Zhang ⁴ , Shuiliang
8	Yao ^{1,2,3,*} , Jing Li ^{1,3,*}
9	¹ School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164,
10	China
11	² School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
12	³ Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry,
13	Changzhou 213164, China
14	⁴ Jiangxi Xintai Functional Materials Technology Co., Ltd., Ji'an 343100, China
15	
16	*Corresponding author. Email: yaos@cczu.edu.cn, lijing_831@cczu.edu.cn
17	
18	
19	

20 1 Experimental Section

21 1.1 Details of catalyst preparation method

- 22 KMnO₄ (A.R.) and MnSO₄·H₂O (A.R.) were purchased from Aladdin, Shanghai, China. α -
- 23 MnO₂ and δ -MnO₂ were synthesized by controlling of KMnO₄/MnSO₄ molar ratio with different
- 24 reaction times and temperatures.
- 25 1.25 g KMnO₄ and 0.53 g MnSO₄·H₂O for α -MnO₂ preparation;
- 26 3.38 g MnSO₄·H₂O and 4.58 g (NH₄)₂S₂O₈ for γ -MnO₂ preparation;
- 27 1.50 g KMnO₄ and 0.28 g MnSO₄·H₂O for δ -MnO₂ preparation.

28 Certain amounts of KMnO₄ and MnSO₄·H₂O were dissolved in 80 mL deionized water with magnetic stirring for about 30 min to form homogeneous suspension. Then the liquids were 29 30 instantly transferred into 100 mL Teflon-lined stainless-steel autoclaves and sealed. The 31 autoclaves were put into an oven to maintain the temperature at 160 °C for 12 h for α - and δ -MnO₂ preparation and at 90 °C for 24 h for γ-MnO₂ preparation. After cooling drown naturally to room 32 33 temperature, the resulting MnO₂ precipitates were collected, filtered, and washed with deionized water. All of the MnO₂ precipitate products were dried at 80 °C for 2 h and calcined at 360 °C for 34 35 2 h.

36 1.2 Catalyst characterization

All prepared different MnO₂ catalysts were characterized using X-ray diffractometry (XRD), scanning electron microscope (SEM, TESCAN MIRA LMS), high-resolution transmission electron microscope (HRTEM, JEOL JEM-2100), X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha analyzer), Raman spectroscopy (HORIBA Scientific LabRAM HR Evolution, Japan), and O₂ temperature-programmed desorption (O₂-TPD, Tilon, LC-D200M, Ametek, USA).

43 1.3 Calculations

44 The turnover frequency of CH_4 conversion on the catalyst (*TOF*, µmol m⁻² min⁻¹) was 45 defined in Equation S1:

$$46 TOF = \frac{F \cdot [CH_4]_{in} \cdot x}{60 \cdot m \cdot S_{BET}} (S1)$$

47 where, *F* is the total gas flow rate in L min⁻¹. *m* in g is the weight of the catalyst used in the 48 quartz tube reactor. $[CH_4]_{in}$ and *x* are CH₄ concentration (µmol L⁻¹) in the gas at the inlet of the 49 quartz tube reactor and CH₄ conversion, respectively. S_{BET} is the specific area of the catalyst, in 50 m² g⁻¹.

51 The activation energy (E_a , kJ mol⁻¹) of CH₄ oxidation was calculated based on the Arrhenius 52 equation obtained as follows:

53
$$-r_{co} = k[CH_4]^{\alpha} \cdot [O_2]^{\beta}$$
 (S2)

54 where, *k* is a rate constant. [CH₄] and [O₂] are concentrations of CH₄ and O₂, respectively. α and 55 β are constants. α is generally 1.0, β equals 0 since O₂ concentration is higher enough than that of 56 CH₄^{1,2}. Thus,

$$\frac{d[CH_4]}{[CH_4]} = -k \cdot dt \tag{S3}$$

$$\ln (1 - x) = -k \cdot t \tag{S4}$$

$$t = \frac{V_{catal}}{V_{gas}} = \frac{V_{catal}}{\frac{V_{gas}^{0}}{T^{0}} \cdot T}$$
(S5)

59

$$k = -T ln(1-x) \left[\frac{V_{gas}^{0}}{T^{0}} \right] = A e^{-\frac{E_{a}}{RT}}$$
(S6)

60

$$lnk = \ln\left[-Tln(1-x)\right] + \ln\left[\frac{V_{gas}^{0}}{T^{0}}\right] = -\frac{E_{a}}{RT} + A$$
(S7)

61

62 where, V_{catal} is the volume of the catalyst in the quartz tube reactor. *t* and *T* are reaction time and 63 temperature, respectively. V_{gas}^0 is the gas flow rate at reaction temperature T_0 .

64 1.4 Normalization of peak intensity

65 The collected infrared spectra at different temperatures were normalized for relatively 66 quantitative analysis. The normalization is based on the absolute values of the strongest peak 67 height ($P_{i max}$) of a positive peak and lowest peak height ($P_{i min}$) of a negative peak using Equations 68 S8 and S9, respectively.

69

$$N_i = \frac{P_i}{P_{i max}}$$
(S8)

$$N_i = \frac{P_i}{|P_{i\,min}|} \tag{S9}$$

- N_i represents the normalized value of the absorption peak *i* at the corresponding temperature;
- P_i represents the peak height of the absorption peak *i* at the corresponding temperature.

74 Reference:

- A.-P. Jia, G.-S. Hu, L. Meng, Y.-L. Xie, J.-Q. Lu and M.-F. Luo, *Journal of Catalysis*,
 2012, 289, 199-209.
- J.-Q. Lu, C.-X. Sun, N. Li, A.-P. Jia and M.-F. Luo, *Applied Surface Science*, 2013, 287,
 124-134.

81 2 Supporting Figures

83 Fig. S1. Experimental setup of the operando TPR-DRIFTS-MS system.

86 Fig. S2. Normalization curve of M^+ - O_2^- and M^{2+} - O_2^{2-} under CH_4/Ar atmosphere.

Gas atmosphere	Composition (%)	Total gas flow rate
		(mL/min)
CH ₄ /Ar	CH ₄ : 2.37%, Ar: balance	38
CH ₄ +O ₂ /Ar	CH ₄ : 2.37%, O ₂ :10%, Ar: balance	38
O ₂ /Ar	O ₂ : 5.26%, Ar: balance	38
CO ₂ /Ar	CO ₂ : 2.37%, Ar: balance	38

95 Table S1 Composition of the gases fed to the reaction chamber.