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1. Supplementary Experimental Information

1.1 Catalyst characterization

  The crystal phase structure of the fresh and spent catalysts was analyzed by X-ray powder 

diffraction (XRD) which was carried out in a Bruker AXS D8 Focus of 40KV acceleration 

voltage and 30 mA emission current using a Cu target and Kα-ray irradiation, 2θ gap of 

10° to 80° with step of 0.02°/s.

  X-ray photoelectron spectroscopy (XPS) characterization was carried out in a 

ESCALAB250xi X-ray photoelectron spectroscopy system equipped a single MgKα X-ray 

source operated at 300 W and 15 kV voltage. The binding energies were calibrated based 

on the C 1s peak of graphite at 284.6 eV.
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  The specific surface area of the fresh and spent catalysts was measured by nitrogen 

adsorption-desorption at 77 K on an ST-08B instrument and determined using the 

Brunauer–Emmett–Teller (BET) equation.

   In situ Raman spectra of all the catalysts were performed on a Renishaw in Via instrument 

using a 532 nm laser source equipped with a Linkam TS 1500 micro-size in situ cell, with 

a scanning Raman shift range of 100-1000 cm-1. All samples were pretreated in an Ar 

atmosphere with a gas flow rate of 30 mL/min at 800 °C for half an hour and then cooled 

to room temperature. An air flow was introduced at a rate of 30 mL/min and heated at a 

rate of 10 °C/min from ambient temperature to 800 oC. Raman spectra were collected at 

25, 200, 400, 600, and 800 °C.

CH4-TPSR-MS, C2H6-TPSR-MS, CH4-pulse and C2H6-pulse test were performed on a 

BelCata II apparatus equipped with a BelMass using quadruple as a mass analyzer. The 

outlet products (C2H4 m/z=27, C2H6 m/z=30 CO m/z=28 and CO2 m/z=44) were measured 

instantaneously with the mass spectrometer system. Typically, a certain weight of the 

samples was pretreated at 800 oC under a pure He atmosphere (30 mL/min) for 30 min, 

which was then cooled to 50 oC. The sample pre-treatment for all subsequent testing 

experiments is the same as this process. 

For CH4-TPSR-MS experiment, 200 mg of a catalyst sample was first heated at a rate of 

10 ° C/min in a He atmosphere (60 mL/min) to 800 °C for removing surface impurities. 

The sample was then cooled to 50 °C and introduced into a mixed gas (CH4:He=3:4) with 

a flow rate of 60 mL/min at the same temperature; subsequently, it was heated to 800 °C 

at a rate of 10 ° C/min to record the relevant mass spectrometry signals.

For CH4-pulse experiment, 200 mg of catalyst is heated for half an hour at 10 °C/min in 

a 10% O2-He (flow rate of 30 mL/min) atmosphere from room temperature to 800 °C to 

achieve saturation of oxygen adsorption. After He gas (flow rate of 30 mL/min) was 

incorporated for 15 min to remove physically adsorbed O2 on the surface, 1 mL of methane 

was pulsed every 3 min to collect relevant mass spectrometry signals.

For C2H6-TPSR-MS experiment, the samples were subjected to a C2H6:He=1:8 flow rate 

of 60 mL/min at 50 °C  and then heated to 700 °C at a rate of 10 °C/min to record the 

relevant mass spectrometry signals.
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   Electron paramagnetic resonance (EPR) spectra of reactive oxygen species were recorded 

with a JEOL FA-200 EPR Spectrometer, operating with a field modulation of 100 kHz and 

microwave frequencies of 9067.558 MHz.

2. Supplementary Results

Regular perovskite
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Layered perovskite

Scheme S1. Crystalline phase structures of the (a) regular perovskite and (b) monoclinic 

layered perovskite.
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(a) (b)

Fig. S1 XRD patterns of the (a) ANbO3 (A=Na, K) and (b) A2՛Nb2O7 (A=Ca, Sr) samples.
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Fig. S2 The Rietveld refinement XRD patterns of (a) NaNbO3, (b) KNbO3, (c) Ca2Nb2O7, 

(d) Sr2Nb2O7. 
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(a) (b)

Fig. S3 XRD patterns of the spent catalysts after OCM reaction (a) ANbO3 (A=Na, K) 

and (b) A2՛Nb2O7 (A=Ca, Sr) samples.

(a) (b)

Fig. S4 XRD patterns of the spent catalysts after ODHE reaction (a) ANbO3 (A=Na, K) 

and (b) A2՛Nb2O7 (A=Ca, Sr) samples.
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Fig. S5 H2-TPR profiles of the ANbO3 (A=Na, K) and A2՛Nb2O7 (A=Ca, Sr) samples.

     

(a) (b)

Fig. S6 Nb 3d spectra of (a) ANbO3 (A=Na, K) and (b) A2՛Nb2O7 (A=Ca, Sr) samples.
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Table S1 Refined Nb-O bond lengths of ANbO3 (A=Na, K) and A2՛Nb2O7 (A=Ca, Sr) 

samples.

Samples
Nb-O bond 

length 

 (Å)

Average Nb-O 

bond length 

(Å)

Samples
Nb-O bond 

length 

 (Å)

Average Nb-O 

bond length 

(Å)

Nb-O1 1.982 (1) Nb-O2 2.575 (6)

Nb-O2 1.980 (1) Nb-O3 2.003 (4)

Nb-O3 2.103 (2) Nb-O3 2.003 (4)

Nb-O3 1.884 (1) Nb-O4 2.120 (5)

Nb-O4 2.096 (2) Nb-O5 1.760 (5)

NaNbO3

Nb-O4 1.904 (1)

1.992 Ca2Nb2O7

Nb-O6 1.851 (4)

2.052

Nb-O1 2.037 (1) Nb-O4 1.786 (1)

Nb-O2 1.958 (1) Nb-O5 1.999 (1)

Nb-O2 2.124 (1) Nb-O6 2.357 (2)

Nb-O2 2.124 (1) Nb-O7 1.867 (1)

Nb-O2 1.910 (2) Nb-O8 2.253 (2)

KNbO3

Nb-O2 1.910 (1)

2.011 Sr2Nb2O7

Nb-O9 2.109 (2)

2.062


