Supporting information

Boosting Hydrogen Peroxide Production of Brookite TiO₂ under UV Light through Au and MXene Co-catalysis

Xiaoyu Sun^a, Tianyi Wang^{b,*}, Chengyin Wang^{b,*}, Teruhisa Ohno^{a,**}

a Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, 1 -

1 Sensuicho, Tobata, Kitakyushu 804-8550, Japan

b School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002,

China

Email addresses: Tianyi Wang: wangty@yzu.edu.cn Chengyin Wang: wangcy@yzu.edu.cn Teruhisa Ohno: tohno@che.kyutech.ac.jp

Figure S1. (a) HR TEM image of pure brookite TiO₂;(b)-(e) TEM EDS mapping pictures of TiO₂/Au

Figure S2. (a)-(f) EDS mapping pictures of MXene

Figure S3. (a)-(f) EDS mapping pictures of TiO₂/Au/MXene;

Figure S4. The photos of TiO₂/Au with 0.1 %-1.0 % Au content.

Figure S5. The photos of TiO₂/Au/MXene with 1 %-25 % MXene content.

Figure S6. (a) XRD data of brookite TiO_2 and TiO_2/Au with different Au content; (b) Uv-vis of brookite TiO_2 and TiO_2/Au with 0.1%-1.0% Au content.

Figure S7. XRD data of TiO₂/Au/MXene with different MXene content.

Figure S8. Nitrogen adsorption-desorption isotherms of TiO₂, MXene, TiO₂/Au and TiO₂/Au/MXene.

Figure S9. LSV data of (a)Brookite TiO₂; (b)TiO₂/Au and (c)TiO₂/Au/MXene at ph=6.09.

Figure S10.(a) Amounts of H_2O_2 production from Rutile, Anatase and Brookite TiO₂; (b) Amounts of H_2O_2 production from Rutile, Anatase and Brookite TiO₂ after 4 hours.

Figure S11. Amounts of H_2O_2 production from TiO₂/Au with different MXene content after 4 hours under the condition of pH=7 with UV light .

Figure S12. Amounts of H_2O_2 production from TiO₂/Au/MXene with different MXene content after 0.5 and 4 hours under the condition of pH=7 with UV light .

Figure S13. Amounts of H_2O_2 production from TiO₂/Au/MXene with different MXene content 0.5 and after 4 hours under the condition of pH=3 with UV light.

Figure S14. Formation rate constant (Kf) and decomposition rate constant (Kd) for H₂O₂ production.

Figure S15. XPS and XRD of TiO₂/Au/MXene before and after H₂O₂ production.

Figure S16. Motto-Schottky plots of TiO₂/Au/MXene.

Table S1. Comparison with other photocatalysts based on TiO₂ for H₂O₂ production.

Photocatalysts	Concentration of photocatalyst	Light source	H_2O_2 yields (µmol g ⁻¹ h ⁻¹)	References
	(g L ⁻¹)		(r8)	

		300 W Xe lamp ($\lambda > 420$		
Ti_3C_2/g - C_3N_4	1.0	nm)	131.71	[2]
Pd/APTMS/TiO ₂	-	-	150	[5]
Ti ₃ C ₂ /TiO ₂	1.0	5 W lamp ($\lambda = 365$ nm)	179.71	[19]
		500 W Hg lamp ($\lambda = 300$ -		
Cu ²⁺ /TiO ₂	100	400 nm)	0.96	[41]
		450 W Hg lamp ($\lambda = 280$ -		
Au-Ag/TiO ₂	1.0	400 nm)	150	[42]
		125 W Hg Lamp (λ < 320		
Zn ²⁺ /TiO ₂	0.5	nm)	146.67	[43]
Au/TiO ₂	1.0	Hg lamp ($\lambda > 320$ nm)	243.33	[44]
Au/SnO ₂ -TiO ₂	1.0	300 W Xe lamp (UV light)	600	[45]
		300 W Xe lamp (360		
TiO ₂ /Au/MXene	0.5	nm<λ<380 nm)	331.76	This worl