# **Supporting Information**

# Sewage Remediation Using Solar Energy and a Triply Fused Zn-Porphyrin Dimer Molecular Graphene Photocatalytic Agent

Fei Cheng,<sup>a</sup> Taotao Qiang,<sup>a\*</sup> Mingli Li,<sup>a</sup> Tony D. James<sup>b,c\*</sup>

<sup>a</sup> College of Bioresources and Materials Engineering, Shaanxi Collaborative Innovation Center of Industrial

Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, 710021, China.

<sup>b</sup> Department of Chemistry, University of Bath, BAth, BA27AY, UK.

<sup>c</sup> School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.

## **Table of Contents**

| Instrumentation and Materials | 3  |
|-------------------------------|----|
| General Procedures            | 4  |
| Compounds Data                | 6  |
| <u>NMR spectra</u>            | 7  |
| Mass Spectra                  | 11 |
| Absorption spectra            | 12 |
| Application Experimental Data | 13 |
| References                    | 25 |

#### **Instrumentation and Materials**

<sup>1</sup>H NMR (600 MHz) spectra were recorded on a Bruker AVANCE NEO 600MHz spectrometer, and chemical shifts were reported using the delta scale in ppm relative to CHCl<sub>3</sub> as internal reference for <sup>1</sup>H NMR ( $\delta$  = 7.260 ppm). Absorption spectra were recorded on a Cary 5000 spectrometer. MALDI-TOF mass spectra were obtained with a Bruker ultraflextreme MALDI-TOF/TOF spectrometer with matrix. Material surface morphology were observed on a FEI Verios 460 spectrometer. Dispersion of materials in aqueous solution were taken on an ALV/C spectrometer. Photogenic charge lifetime was recorded on an ultrafast systems helios spectrometer. Electrochemical data were measured by cyclic voltammetry on a PGSTAT 302N scanning electrochemical microscope. Free radical species were recorded on a CIQTEK EPR200-Plus spectrometer. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

### **General Procedures**



Synthesis of Por<sup>S1</sup>: 3,5 *di-tert*-butylphenyl-dipyrromethane 1 (3.34 g, 10.00 mmol), dipyrromethene 2 (1.46 g, 10.00 mmol), and 3,5 *di-tert*-butylbenzaldehyde (4.36 g, 20.00 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (1.5 L) and degassed for 15 min (bubbling N<sub>2</sub> through the solution). Boron fluoride ethyl ether (0.15 mL) was added and the reaction was stirred for 2 h at rt under the exclusion of light. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (6.80 g, 30.00 mmol) was added and the mixture was stirred for further 4 h under air. The acid was quenched via the addition of NEt<sub>3</sub> (5 mL), the solvent was removed and the crude product purified by silica-gel column chromatography (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether as an eluent) and recrystallized from CH<sub>2</sub>Cl<sub>2</sub>/MeOH, **Por** (1.05 g, 1.20 mmol, 12% yield) was obtained as a purple solid.



Synthesis of Zn-Por<sup>S2</sup>: Por (1.00 g, 1.10 mmol) was added to a round-bottomed 250 mL flask containing a magnetic stirring bar, and dissolved in  $CH_2Cl_2$  (100 mL)/MeOH (10 mL).  $Zn(OAc)_2$  (0.61 g, 3.30 mmol) was added, after being stirred at 25 °C for 3 h. The reaction mixture was poured in to water and the products were extracted with  $CH_2Cl_2$ . The organic extracts were combined, washed with water, and dried over anhydrous sodium sulfate. The solvent was evaporated, and the product was recrystallization with  $CH_2Cl_2$ /MeOH, Zn-Por (1.02 g, 1.08 mmol, 99% yield) was obtained as a red solid.



Synthesis of Oligo-Zn-Por<sup>S3</sup>: A flask containing Zn-Por (0.10 g, 0.11 mmol), DDQ (0.12 g, 0.55 mmol), and Sc(OTf)<sub>3</sub> (0.27 g, 0.55 mmol) was purged with argon, and then charged with toluene (10 mL). The mixture was stirred at 50 °C for 2 h. The reaction was quenched by the addition of a saturated aqueous NaHCO<sub>3</sub> solution. Then, the mixture was poured in to water and the products were extracted with CHCl<sub>3</sub>. The organic extracts were combined, washed with water, and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by gel column chromatography (CHCl<sub>3</sub> as an eluent) and recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/MeOH, **Oligo-Zn-Por** (0.08 g, 0.04 mmol, 80% yield) was obtained as a purple solid.

**Photocatalytic process**<sup>S4</sup>: The photocatalytic reduction of heavy metal Cr(VI) was carried out in an outdoor environment (Longitude 108.977° and latitude 34.378° of Xi 'an Campus, Shaanxi University of Science and Technology, Xi 'an City, Shaanxi Province, China) in 50 mL quartz tube. The effects of the amount of photocatalyst (5-40 mg), the concentration of Cr(VI) (10-70 mg/L), pH (2-8), the sunlight catalysis in different time periods (8:00-16:00) in a day and the climate change in four seasons on the catalytic reduction of Cr(VI) by sunlight were studied. The amount of Cr(VI) aqueous solution was 30mL, and the pH value was adjusted with 1M H<sub>2</sub>SO<sub>4</sub> and 1M NaOH. After stirring in the dark for 30 min, the photocatalyst and Cr(VI) aqueous solution reached adsorption equilibrium, and the suspension was irradiated by sunlight. During the catalysis process, 2 mL suspension was collected at an interval of 30 min, and the suspended catalyst was removed with a stream filter (0.22 $\mu$ m). The content of Cr(VI) was determined by Agilent Cary 5000 UV-vis spectrophotometer at 540 nm.

#### **Compounds Data**

**Por**: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ = 10.31 (s, 1H, *meso*-H), 9.46 (d, *J* = 4.8 Hz, 2H, β-H), 9.27 (d, *J* = 4.8 Hz, 2H, β-H), 9.20 (d, *J* = 4.8 Hz, 2H, β-H), 9.16 (d, *J* = 4.8 Hz, 2H, β-H), 8.35 (s, 4H, Ar-H), 8.32 (s, 2H, Ar-H), 8.03 (s, 2H, Ar-H), 8.01 (s, 1H, Ar-H), 1.76 (s, 36H, *t*-Bu-H), 1.73 (s, 18H, *t*-Bu-H), -2.64 (s, 2H, NH-H) ppm.

**Zn-Por**: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta = 10.26$  (s, 1H, *meso*-H), 9.41 (d, J = 4.8 Hz, 2H,  $\beta$ -H), 9.15 (d, J = 4.8 Hz, 2H,  $\beta$ -H), 9.05 (d, J = 4.8 Hz, 2H,  $\beta$ -H), 9.03 (d, J = 4.8 Hz, 2H,  $\beta$ -H), 8.12 (d, J = 1.8 Hz, 4H, Ar-H), 8.09 (d, J = 1.8 Hz, 2H, Ar-H), 7.82 (s, 2H, Ar-H), 7.79 (s, 1H, Ar-H), 1.55 (s, 36H, *t*-Bu-H), 1.52 (s, 18H, *t*-Bu-H) ppm; UV/Vis (CHCl<sub>2</sub>):  $\lambda_{max}$  ( $\varepsilon$  [M<sup>-1</sup>cm<sup>-1</sup>]) = 422 (177000), 549 (6270), 588 (1640) nm.

**Oligo-Zn-Por**: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta = 7.75$  (d, J = 4.8 Hz, 4H,  $\beta$ -H), 7.71 (d, J = 4.8 Hz, 4H,  $\beta$ -H), 7.67 (d, J = 1.8 Hz, 8H, Ar-H), 7.64 (d, J = 1.8 Hz, 4H, Ar-H), 7.62 (s, 4H, Ar-H), 7.59 (s, 2H, Ar-H), 7.35 (s, 4H,  $\beta$ -H), 1.46 (s, 72H, *t*-Bu-H), 1.42 (s, 36H, *t*-Bu-H) ppm; <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>):  $\delta = 153.95$ , 153.53, 153.43, 153.03, 149.10, 148.78, 140.05, 135.67, 131.37, 131.12, 128.19, 127.46, 127.29, 126.18, 120.88, 120.78, 34.86, 31.62, 31.56 ppm; HR-MS (MALDI-TOF-MS) m/z = 1867.0891 [M]<sup>+</sup>, calcd for (C<sub>124</sub>H<sub>138</sub>N<sub>8</sub>Zn<sub>2</sub>)<sup>+</sup> = 1866.9627; UV/Vis (CHCl<sub>3</sub>):  $\lambda_{max}$  ( $\varepsilon$  [M<sup>-1</sup>cm<sup>-1</sup>]) = 413 (91000), 458 (32700), 576 (84000), 916 (11100), 1040 (22700) nm.

## NMR spectra



Figure S1. <sup>1</sup>H NMR spectrum of Por in CDCl<sub>3</sub>.



Figure S2. <sup>1</sup>H NMR spectrum of Zn-Por in CDCl<sub>3</sub>.



Figure S3. <sup>1</sup>H NMR spectrum of Oligo-Zn-Por in CDCl<sub>3</sub>.



Figure S4. <sup>13</sup>C NMR spectrum of Oligo-Zn-Por in CDCl<sub>3</sub>.

# Mass Spectrum



Figure S5. HR-MS spectrum of Oligo-Zn-Por

# Absorption spectra



Figure S6. Absorption spectra of Oligo-Zn-Por in different solvent.

## **Application Experimental Data**



**Figure S7.** Effect of the amount of photocatalyst on the adsorption rate of Cr(VI) (The catalytic period was July, 2022, photocatalyst dosage of 5 mg, Cr(VI) concentration of 10 mg/L).



**Figure S8.** Effect of the amount of photocatalyst on the reduction rate of Cr(VI) (The catalytic period was July, 2022, Cr(VI) concentration is 10 mg/L).



**Figure S9.** Effect of Cr(VI) concentration on reduction rate(The catalytic period was July, 2022, **Oligo-Zn-Por** dosage is 5 mg).



**Figure S10**. Effect of pH on reduction rate of Cr(VI) (The catalytic period was July, 2022, **Oligo-Zn-Por** dosage is 5 mg, Cr(VI) concentration is 70 mg/L).



**Figure S11.** Effect of sunlight catalyzes at different times of the day on reduction rate of Cr(VI) (The catalytic period was July 15, 2022, **Oligo-Zn-Por** dosage is 5 mg, Cr(VI) concentration is 70 mg/L).



**Figure S12**. Effect of sunlight catalyzes at different times of the year on reduction rate of Cr(VI) (The catalytic period was July 2022, **Oligo-Zn-Por** dosage is 5 mg, Cr(VI) concentration is 70 mg/L).



**Figure S13**. Effect of cycle-index on reduction rate of Cr(VI) (The catalytic period was July, 2022, **Oligo-Zn-Por** dosage is 5 mg, Cr(VI) concentration is 70 mg/L).



**Figure S14**. The cyclic stability of **Oligo-Zn-Por** was verified by <sup>1</sup>H NMR (Red is the <sup>1</sup>H NMR of **Oligo-Zn-Por** before the photocatalytic reaction, blue is the <sup>1</sup>H NMR of **Oligo-Zn-Por** after photocatalytic reaction).



Figure S15. High-resolution Cr 2p XPS spectrum of Oligo-Zn-Por after the Cr(VI) reduction cyclic experiment.



Figure S16. XPS valence band spectrum of Oligo-Zn-Por.



Figure S17. (a) Solid UV-visible absorption spectra of Oligo-Zn-Por, (b) the band edges of Oligo-Zn-Por.

# Table S1

| Photocatalyst                                          | Catalyst<br>dosage (mg) | Initial Cr(VI)<br>concentration<br>(mg/L) | Solution<br>volume (mL) | Photosource | Reduction efficiency | Refs.      |
|--------------------------------------------------------|-------------------------|-------------------------------------------|-------------------------|-------------|----------------------|------------|
| BCG-5                                                  | 30                      | 20                                        | 50                      | Xe lamp     | 81.51%               | 9          |
| $ZnO/Bi_2S_3$                                          | 50                      | 20                                        | 50                      | Xe lamp     | 95%                  | 51         |
| Carbon dots-TiO <sub>2</sub>                           | 50                      | 10                                        | 50                      | Xe lamp     | 99.2%                | S5         |
| $RGO/\alpha$ - $MnO_2$                                 | 50                      | 10                                        | 50                      | Xe lamp     | 76%                  | S6         |
| Bi <sub>2</sub> WO <sub>6</sub>                        | 60                      | 10                                        | 50                      | Xe lamp     | 78%                  | S7         |
| $CoS_2$                                                | 10                      | 20                                        | 20                      | Xe lamp     | 10.2%                | <b>S</b> 8 |
| CdS                                                    | 30                      | 10                                        | 150                     | Xe lamp     | 13%                  | S9         |
| $Bi_2O_3/Bi_2S_3$                                      | 25                      | 80                                        | 50                      | Xe lamp     | 91.8%                | S10        |
| CoS <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub> -rGO | 10                      | 20                                        | 20                      | Xe lamp     | 72%                  | S11        |
| Oligo-Zn-Por                                           | 5                       | 70                                        | 30                      | Sunlight    | 84.6%                | This       |
|                                                        |                         |                                           |                         |             |                      | study      |

Comparison of reported literature on the photo-reduction of Cr(VI).

#### **References**

- S1 M. M. Martin, D. Lungerich, P. Haines, F. Hampel and N. Jux, *Angew. Chem., Int. Ed.*, 2019, 58, 8932-8937.
- S2 M. J. Plater, S. Aiken and G. Bourhill, *Tetrahedron*, 2002, 58, 2415-2422.
- S3 A. Tsuda and A. Osuka, *Science*, 2001, **293**, 79-82.
- S4 F. P. Zhao, Y. P. Liu, S. B. Hammoud, B. Doshi, N. Guijarro, X. B. Min, C. J. Tang, M. Sillanpääe, K. Sivulad and S. B. Wang, *Appl. Catal.*, *B*, 2020, 272, 119033.
- S5 Y. R. Li, Z. M. Liu, Y. C. Wu, J. T. Chen, J. Y. Zhao, F. M. Jin and P. Na, Appl. Catal., B, 2018, 224, 508-517.
- S6 D. k. Padhi, A. Baral, K. Parida, S. K. Singh and M. K. Ghosh, J. Phys. Chem. C, 2017, 121, 6039-6049.
- S7 F. Xu, H. M. Chen, C. Y. Xu, D. P. Wu, Z. Y. Gao, Q. Zhang and K. Jiang, J. Colloid Interface Sci., 2018, 525, 97-106.
- S8 Y. J. Wang, S. Y. Bao, Y. Q. Liu, W. W. Yang, Y. S. Yu, M. Feng and K. F. Li, Appl. Surf. Sci., 2020, 510, 145495.
- S9 F. Deng, X. Y. Lu, Y. B. Luo, J. Wang, W. J. Che, R. J. Yang, X. B. Luo, S. L. Luo and D. D. Dionysiou, Chem. Eng. J., 2019, 361, 1451-1461.
- S10 Y. Sang, X. Cao, G. D. Dai, L. X Wang, Y. Peng and B. Y. Geng, J. Hazard. Mater., 2020, 381, 120942.
- S11 X. Zhang, W. W. Yang, M. Y. Gao, H. Liu, K. F. Li, Y. S. Yu, Green, Energy Environ., 2022, 7, 66-74.