Supporting Information

Amorphous versus nanocrystalline RuO₂ electrocatalysts: Activity and

stability for oxygen evolution reaction in sulfuric acid

Kosuke Beppu, a Kazuki Obigane, a and Fumiaki Amano *a

^aDepartment of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.

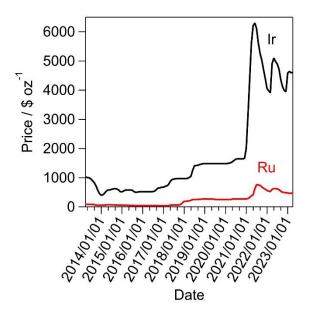


Figure S1 Ir and Ru price changes over the past 10 years. The data were obtained from http://www.platinum.matthey.com/prices/price-charts.

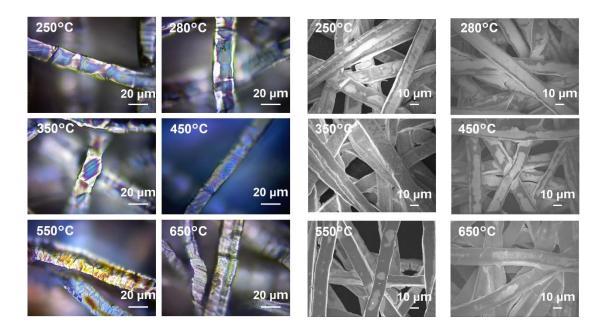


Figure S2 Optical micrographs (left) and low magnification SEM images (right) of RuO_2/Ti -felt(x) samples.

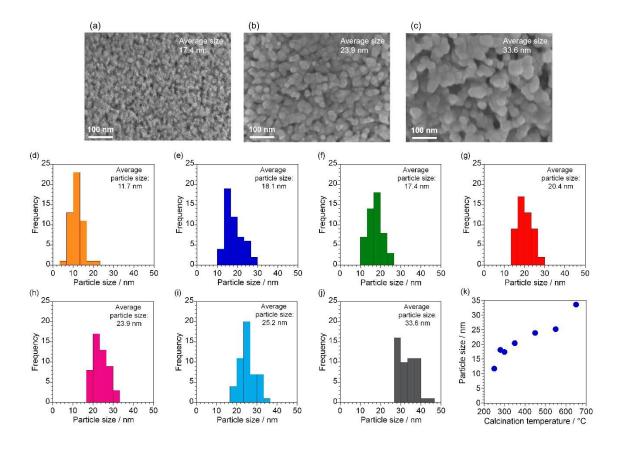


Figure S3 Surface SEM images of (a) RuO_2/Ti -felt(300), (b) RuO_2/Ti -felt(450) and (c) RuO_2/Ti -felt(650) electrocatalysts. (d–j) Particle size distributions of RuO_2 in RuO_2/Ti -felt(*x*) samples estimated from SEM images; (d) RuO_2/Ti -felt(250), (e) RuO_2/Ti -felt(280), (f) RuO_2/Ti -felt(300), (g) RuO_2/Ti -felt(350), (h) RuO_2/Ti -felt(450), (i) RuO_2/Ti -felt(550) and (j) RuO_2/Ti -felt(650). (k) Average particle size in RuO_2/Ti -felt(*x*) samples as a function of calcination temperature.

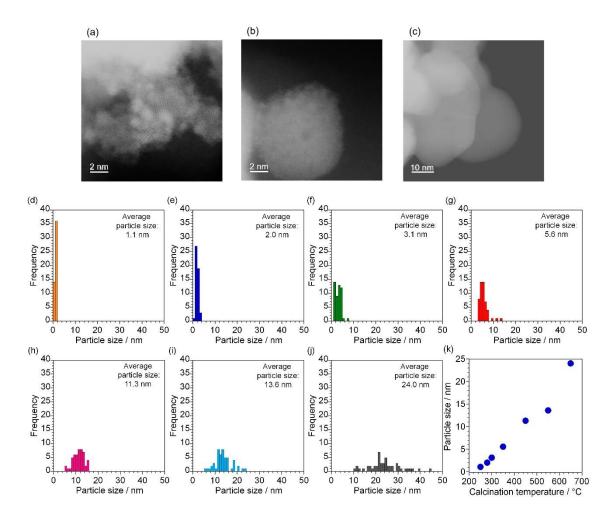


Figure S4 STEM images of (a) RuO_2/Ti -felt(300), (b) RuO_2/Ti -felt(450) and (c) RuO_2/Ti -felt(650) electrocatalysts. (d-j) Particle size distributions of RuO_2 in RuO_2/Ti -felt(x) estimated from STEM images; (d) RuO_2/Ti -felt(250), (e) RuO_2/Ti -felt(280), (f) RuO_2/Ti -felt(300), (g) RuO_2/Ti -felt(350), (h) RuO_2/Ti -felt(450), (i) RuO_2/Ti -felt(550) and (j) RuO_2/Ti -felt(650). (k) Average particle size in RuO_2/Ti -felt(x) samples as a function of calcination temperature.

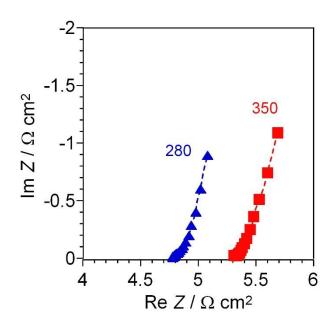


Figure S5 EIS spectra of RuO_2/Ti -felt(280) and RuO_2/Ti -felt(350) electrocatalysts. Data were obtained at 0.26 V vs. RHE from 10 to 10000 Hz.

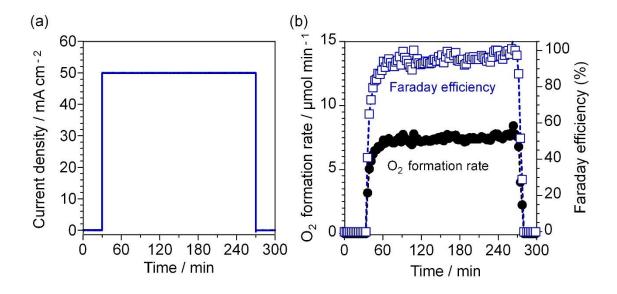


Figure S6 (a) Time course of current density for O_2 gas detection for 4 h. (b) The rate of O_2 gas evolution and Faraday efficiency of O_2 production. The current density was set at zero for 30 min before and 30 min after a 4 h CP experiment at 50 mA cm⁻².

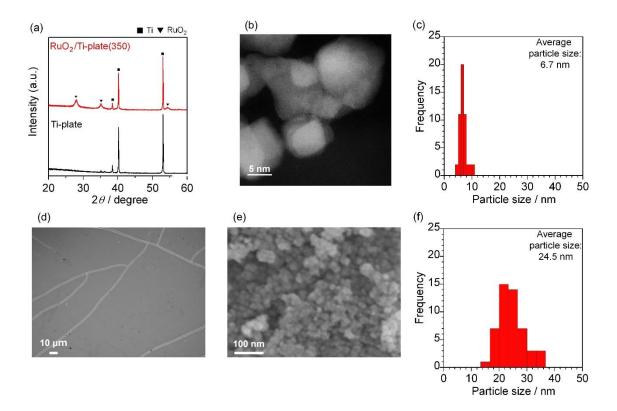


Figure S7 Characterisation of the RuO₂/Ti-plate(350) electrocatalyst. (a) XRD patterns. (b) STEM image. (c) Particle size distribution of RuO₂/Ti-plate(350) estimated by STEM. (d) Low and (e) high magnification SEM images. (f) Particle size distribution of RuO₂/Ti-plate(350) estimated by SEM.

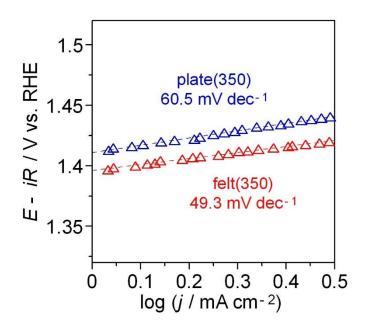


Figure S8 Tafel plots and slopes of *iR*-corrected OER activities of RuO_2/Ti -felt(350) and RuO_2/Ti -plate(350) electrocatalysts. Dashed lines are the fitting results.

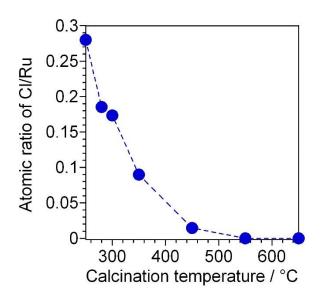


Figure S9 Effect of calcination temperature on the surface Cl/Ru ratio obtained from XPS spectra.

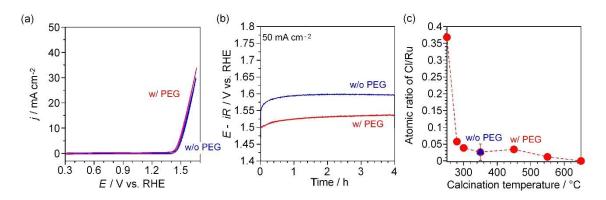


Figure S10 Comparative OER performance of RuO_2/Ti -felt(350) electrocatalyst using the precursor with (red) and without (blue) PEG. (a) CV at 10 mV s⁻¹. (b) Chronopotentiometry at 50 mA cm⁻². (c) Atomic ratio of Cl/Ru obtained from XRF spectra.

Samples	η at 10 mA cm ⁻² [mV]	Tafel slope [mV dec ⁻¹]	O2 Faraday efficiency	Electrolyte	Reference
RuO ₂ / Ti felt(350)	215	49.3	$96 \pm 3\%$ (50 mA cm ⁻²)	0.1 M H ₂ SO ₄	This work
FeCoNiIrRu	241	153	-	0.5 M H ₂ SO ₄	38
Ni-RuO ₂	214	42.6	_	0.1 M HClO4	40
SrRuIrO	190	39	_	0.5 M H ₂ SO ₄	18
Y ₂ Ru ₂ O ₇	337	40	95–100%(1.5 6 V vs. RHE)	0.1 M HClO4	26
SnRuO _x	194	38.2	_	0.1 M H ₂ SO ₄	39
IrO _x	340	_	93% (10 mA cm ⁻²)	1 M H ₂ SO ₄	34
commercial- RuO ₂	370	_	_	0.5 M H ₂ SO ₄	39
amorphous- RuO ₂	280	_	92% (10 mA cm ⁻²)	1 M H ₂ SO ₄	34

Table S1 Comparison of OER activity with that of previously reported electrocatalysts.