Supplementary for

DFT Insights into Crystal Plane Effects of Molybdenum Phosphide (MoP) on the Catalytic Performance in Deoxygenation of Palmitic Acid

Suparada kamchompoo,¹ Yutthana Wongnongwa,² Manaschai Kunaseth,^{2*} Siriporn Jungsuttiwong^{1*}

¹Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of

Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

²NSTDA Supercomputer Center (ThaiSC), National Science and Technology Development

Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand

*E-mail: siriporn.j@ubu.ac.th and manaschai@nanotec.or.th

The adsorption of butanal and butanol on MoP (001) and MoP (101) surfaces

2.07Å	2.20 Å 2.18 Å	2.25Å 2.25Å 2.18Å
perpendicular-top	perpendicular-b	perpendicular-h1
-1.28 eV	-2.45 eV	-2.56 eV
2.03Å	2.22 Å 2.20 Å	2.31 Å 2.23 Å 2.17 Å
Parallel-top	Parallel-b	Parallel-h1
-1.51 eV	-2.43 eV	-2.31 eV

Fig. S1. Optimized structures of butanal adsorption on MoP (001) surface

2.27 Å	2.38 Å 2.72 Å	2.27 Å	2.27 Å
perpendicular-top	perpendicular-b	perpendicular-h1	perpendicular-h2
-1.34 eV	-1.25 eV	-1.42 eV	-1.31 eV
2.28 Å	2.48 Å	2.56Å 2.48Å	2.44 Å 2.56Å 2.54 Å
Parallel-top	Parallel-b	Parallel-h1	Parallel-h2
-1.37 eV	-1.25 eV	-1.24 eV	-1.25 eV

Fig. S2. Optimized structures of butanol adsorption on MoP (001) surface

Fig. S3. Optimized structures of butanal adsorption on MoP (101) surface

	2,15 Å	201Å	z.mA
perpendicular-top	perpendicular-b	Parallel-top	Parallel-b
-1.16 eV	-1.43 eV	-1.10 eV	-1.04 eV

Fig. S4. Optimized structures of butanol adsorption on MoP (101) surface

12.31 Å	2.31Å	2.28 Å
perpendicular-top	Parallel-top	Parallel-b
-1.16 eV	-1.12 eV	-1.12 eV

H₂ dissociation

Fig. S5. Energy profiles and structures along the H2 dissociation on MoP (001) and MoP (101) surfaces

DX reaction mechanism on MoP (001) surface

> Fig. S6. The butyric acid conversion to butanal pathway on MoP (001) surface

Fig. S7. The butanal conversion to butanol pathway on MoP (001) surface

Fig. S8. The butanol conversion to butane pathway on MoP (001) surface

Fig. S9. The butanal conversion to propane pathway on MoP (001) surface

