Supplementary Material

A highly efficient Li-Cu/MoO_x catalyst constructed by a precursor dispersion and alkali metal promotion stepwise regulation strategy for CO₂ hydrogenation to methanol reaction

Bin Kang^a, Yichi Zhang^a, Jian Sun^a, Hui Yang^a, Yue Su^{*,b}, Haiquan Su^{*,a}

^aInner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China ^bSchool of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China E-mail addresses: <u>haiquansu@imu.edu.cn</u> (H. Su)

suyue@imu.edu.cn (Y. Su)

Figure S1: Mapping results of the Cu/MoO_x-spent (a-c) and Cu/MoO_x-mix-spent (d-i)

Figure S2: XRD patterns and Raman spectra of the Cu/MoO_x-spent (a, b) and Cu/MoO_x-

mix-spent (c, d).

Figure S3: Cu LMM Auger spectrum of Cu/MoO_x-mix (a) and Cu/MoO_x (b)

Figure S4: XPS spectra of Cu/MoO_x-spent (a) and Cu/MoO_x-mix-spent (b)

Figure S5: Cu LMM Auger spectrum of Cu/MoO_x-spent (a) and Li-Cu/MoO_x-spent (b)

	Mo ⁶⁺			Mo ⁵⁺			Mo ⁴⁺		
Samples	3d _{5/2}	3d _{3/2}	Percentage	3d _{5/2}	3d _{3/2}	Percentage	3d _{5/2}	3d _{3/2}	Percentage
	(eV)	(eV)	(%)	(eV)	(eV)	(%)	(eV)	(eV)	(%)
Cu/MoO _x -mix	232.8	235.9	84.5	231.5	234.6	15.5	-	-	-
Cu/MoO _x	232.2	235.3	84.8	-	-	-	230.4	233.6	15.3

Table S1: XPS data of Mo 3d for Cu/MoO_x-mix and Cu/MoO_x.

Catalysts	T (℃)	P (Mpa)	Space velocity (h ⁻¹⁾	X _{CO2} (%)	S _{MeOH} (%)	Reference
Cu/ZnO	180	2	9600	5	98	1
Cu/ZrO ₂	260	8	3600	15	86	2
Cu/CeO ₂	280	3	10000	10	74	3
Cu/SiO ₂	190	3	2040	5	79	4
Cu/Mo ₂ CT _x /SiO ₂	230	2.5	/	3	52	5
Cu/ZnO/ZrO ₂	270	5	4600	15	66	6
Cu/ZnO/Al ₂ O ₃	206	2	6000	11	75	7
Cu-Mo ₂ C	150	2	7200	5	70	8
Cu/ZnO/Al ₂ O ₃	280	44.2	10000	90	95	9
Cu/ZnO/Al ₂ O ₃ /ZrO ₂	190	5	/	11	82	10
La_2CuO_4	250	5	3600	9	65	11
Li-Cu/MoO _x	260	5	3000	13.4	88.8	this work

Table S2: Summary of Cu-based catalysts for CO_2 hydrogenation to methanol

<u> </u>	· ·	
Samples	$d(Cu^0)^a$ (nm)	D (%) ^b
Cu/MoO _x -mix (fresh)	70	1.43
Cu/MoO _x -mix (spent)	97	1.03
Cu/MoO _x (fresh)	27	3.70
Cu/MoO _x (spent)	60	1.67
$Li-Cu/MoO_x$ (spent)	37	2.70

Table S3: Cu dispersion degree of the fresh catalysts and spent catalysts

 a^{a} d(Cu⁰) was calculated from Scherrer's equation based on X-ray diffraction data.

 $^{\rm b}$ Cu dispersion degree: D = 100/d(Cu⁰), using the formula from the literature¹².

Figure S6: H₂-TPR profiles of Li-Cu/MoO_x, Cu/MoO_x and Cu/MoO_x-mix

References

- 1. T. Witoon, T. Permsirivanich, W. Donphai, A. Jaree and M. Chareonpanich, *Journal of Energy Chemistry*, 2013, **116**, 72-78.
- K. Samson, M. Liwa, R. P. Socha, K. Góra-Marek and J. Soczyński, ACS Catalysis, 2016, 4, 3730-3741.
- 3. W. Wang, Z. Qu, L. Song and Q. Fu, Journal of Energy Chemistry, 2019.
- J. Yu, M. Yang, J. Zhang, Q. Ge, A. Zimina, T. Pruessmann, L. Zheng, J.-D. Grunwaldt and J. Sun, ACS Catalysis, 2020, 10, 14694-14706.
- H. Zhou, Z. Chen, A. V. López, E. D. López, E. Lam, A. Tsoukalou, E. Willinger, D. A. Kuznetsov,
 D. Mance and A. Kierzkowska, *Nature Catalysis*, 2021, 4, 860-871.
- D. Xiaosu, Z. Ning, L. Feng, X. Fukui and T. Yisheng, *Applied Catalysis B Environmental*, 2016, **191**,
 8-17.
- F. Gallucci, L. Paturzo and A. Basile, *Chemical Engineering&Processing: Process Intensification*, 2004, 43, 1029-1036.
- 8. A. B. Dongil, Q. Zhang, L. Pastor-Pérez, T. Ramírez-Reina, A. Guerrero-Ruiz and I. Rodríguez-Ramos, *Catalysts*, 2020, **10**, 1213.
- R. Gaikwad, A. Bansode and A. Urakawa, *Journal of catalysis*, 2016, 343, 127-132. 10. S. Xiao, Y. Zhang, P. Gao, L. Zhong, X. Li, Z. Zhang, H. Wang, W. Wei and Y. Sun, *Catalysis Today*, 2017, 281, 327-336.
- 10. S. Xiao, Y. Zhang, P. Gao, L. Zhong, X. Li, Z. Zhang, H. Wang, W. Wei and Y. Sun, *Catalysis Today*, 2017, **281**, 327-336

H. Zhan, F. Li, P. Gao, N. Zhao, F. Xiao, W. Wei, L. Zhong and Y. Sun, *Journal of power sources*, 2014, 251, 113-121.

12. Zhenle, Yuan, and, Lina, Wang, and, Junhua, Wang, and and Shuixin, Applied Catalysis B

Environmental, 2011.