Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Control over Borrowing Hydrogen and Acceptorless Dehydrogenative Coupling Process for the Co(III)-NHC Catalysed Chemoselective Alkylation and Cyclisation of 1,2-Phenylenediamine with Alcohols

Misba Siddique^a, Biswaranjan Boity^a, and Arnab Rit^a*

^aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

Table of contents:

General considerations	S2				
Optimization studies for the alkylation and cyclisation of 1,2-phenylenediamines	S2-S3				
General procedure for the synthesis of N, N'-dialkylated diamines	S 3				
General procedure for the synthesis of 1,2-disubstituted benzimidazoles	S4				
General procedure for the synthesis of 2-substituted benzimidazoles	S4				
General procedure for the cyclisation of o-nitroanilines	S4				
General procedure for the synthesis of mono-N-alkylated diamines	S4				
General procedure for the alkylation of amines	S4-S5				
Large-scale reaction	S5				
Analytical data for the isolated compounds	S5-S23				
¹ H and ¹³ C{ ¹ H} NMR spectra of the isolated compounds	S23-S80				
General procedure for the post-modification of isolated compounds	S81-S91				
i) Synthesis of benzimidazolium salt 10a-b					
ii) Synthesis of complex 11a-b					
iii) Unsymmetrical <i>N</i> -alkylation of 7c-d					
Control experiments					
iv) Effect of catalyst loading experiment					
v) Metal hydride trapping experiment					
vi) Radical scavenger experiment					
vii) Mercury-dropping experiment					
Mechanistic studies	S93-S96				
General procedure for deuterium labelling experiment and NMR study	S96-S101				
Computational data	S101-S107				
References	S107-S109				

1. General Considerations

All experiments with metal complexes were performed using oven-dried glassware under an inert atmosphere using either standard Schlenk line or Glove box techniques. All solvents used for the synthesis were distilled, degassed by standard methods, and stored under inert atmosphere over 4 Å molecular sieves. All the ¹H and ¹³C{¹H} NMR spectra were recorded using Bruker 400 and 500 MHz FT-NMR spectrometers, referenced internally to the residual solvent signals. ESI-MS spectra were measured with an Agilent 6545A Q-TOF Mass spectrometer. Chemicals e.g. cobalt precursor, $[Co(Cp^*)Cl_2]_2$ and ligands L1-L3 were synthesized according to the literature procedures.¹ All other chemicals were procured from commercial sources and used as received.¹

Optimization studies for the alkylation and cyclisation of 1,2-phenylene diamine^a

la	$\frac{NH_2}{NH_2} + \frac{OH}{KO^tBu, \text{ solvent,}}$ $\frac{140 \degree C, 24h}{2a}$			$\xrightarrow{\text{nd}}_{3a} \xrightarrow{+}_{4a}$	
	Entry	Complex	Ligand	Solvent	Yield 3a/4a (%)
	1	$[Co(Cp^*)Cl_2]_2$	L3/L1	Xylene	38/35
	2	$\left[\operatorname{Co}(\operatorname{Cp}^*)\operatorname{Cl}_2\right]_2$	L3/L1	^t AmOH	40/38
	3	$\left[\operatorname{Co}(\operatorname{Cp}^*)\operatorname{Cl}_2\right]_2$	L3/L1	1,4-dioxane	52/46
	4	$\left[\operatorname{Co}(\operatorname{Cp}^*)\operatorname{Cl}_2\right]_2$	L3/L1	Toluene	80/78

 Table S1: Screening of solvent

***Reaction conditions**: diamine **1a** (0.5 mmol), benzyl alcohol **2a** (1.25 mmol), KO'Bu (1 equiv.), [Co(Cp*)Cl₂]₂ (1.5 mol %), ligand (3 mol %), solvent (1 mL) at 140 °C for 24 h. Yield: All are isolated yields.

Table S2: Optimization data for the formation of 6a and 7a

Entry	Complex	Ligand	Solvent	Yield 6a/7a (%)
1	$\left[\operatorname{Co}(\operatorname{Cp}^*)\operatorname{Cl}_2\right]_2$	L3	Xylene	- /39
2	$\left[\operatorname{Co}(\operatorname{Cp*})\operatorname{Cl}_2\right]_2$	L3	^t AmOH	- /46
3	$\left[\operatorname{Co}(\operatorname{Cp}^*)\operatorname{Cl}_2\right]_2$	L3	Toluene	- /80
4	$\left[\operatorname{Co}(\operatorname{Cp}^*)\operatorname{Cl}_2\right]_2$	L1	Xylene	35 /8
5	$\left[\operatorname{Co}(\operatorname{Cp}^*)\operatorname{Cl}_2\right]_2$	L1	^t AmOH	41 /10
6	$\left[\operatorname{Co}(\operatorname{Cp}^*)\operatorname{Cl}_2\right]_2$	L1	Toluene	78 /12

***Reaction conditions**: diamine **1a** (0.5 mmol), benzyl alcohol **2a** (0.75 mmol), KO'Bu (0.5 equiv.), [Co(Cp*)Cl₂]₂ (1.5 mol %), ligand (3 mol %), solvent (1 mL) at 140 °C for 24 h. Yield: All are isolated yields.

***Reaction conditions**: amine **1a** (0.5 mmol), benzyl alcohol **2a** (0.75 mmol), KO'Bu (0.25 equiv.), [Co(Cp*)Cl₂]₂ (1.0 mol %), ligand (2 mol %), solvent (1 mL) at 140 °C for 20 h. Yield: All are isolated yields.

General procedure A for the synthesis of *N*, *N*'-dialkylated diamines: An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (0.0075 mmol), ligand L3 (0.015 mmol), and KO'Bu (0.5 mmol, 1 equiv.) followed by toluene (1 mL). Then, the tube was kept in an oil bath at 140 °C and heated for 1 h. After cooling to room temperature, respective diamine 1 (0.5 mmol) and alcohol 2 (1.25 mmol, 2.5 equiv.) were added and further heated at 140 °C for 24 h. After completion of the reaction, analytically pure products were obtained *via* column chromatography using hexane/ethyl acetate as eluent.

General procedure B for the synthesis of 1,2-disubstituted benzimidazoles: An oven-dried Schlenk tube (25 mL) was charged with [Co(Cp*)Cl₂]₂ (0.0075 mmol), ligand L1 (0.015 mmol), and KO'Bu (0.5 mmol, 1 equiv.) followed by toluene (1 mL). Then, the tube was kept

in an oil bath at 140 °C and heated for 1 h. After cooling to room temperature, respective diamine **1** (0.5 mmol) and alcohol **2** (1.25 mmol, 2.5 equiv.) were added and further heated at 140 °C for 24 h. After completion of the reaction, analytically pure products were obtained *via* column chromatography using hexane/ethyl acetate as eluent.

General procedure C for the synthesis of 2-substituted benzimidazoles: An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (0.0075 mmol), ligand L1 (0.015 mmol), and KO'Bu (0.25 mmol, 0.5 equiv.) followed by toluene (1 mL). Then, the tube was kept in an oil bath at 140 °C and heated for 1 h. After cooling to room temperature, respective diamine 1 (0.5 mmol) and alcohol 2 (0.75 mmol, 1.5 equiv.) were added and further heated at 140 °C for 24 h. After completion of the reaction, analytically pure products were obtained *via* column chromatography using hexane/ethyl acetate.

General procedure D for the cyclisation of *o*-nitro aniline: An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (0.0125 mmol), ligand L1 (0.025 mmol), and KO'Bu (0.5 mmol, 1.0 equiv.) followed by toluene (1 mL). Then, the tube was kept in an oil bath at 140 °C and heated for 1 h. After cooling to room temperature, respective *o*-nitro aniline **5** (0.5 mmol) and alcohol **2** (1.5 mmol, 3 equiv.) were added and further heated at 140 °C for 24 h. After completion of the reaction, analytically pure products were obtained *via* column chromatography using hexane/ethyl acetate.

General procedure E for the synthesis of mono-*N*-alkylated diamines: An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (0.0075 mmol), ligand L3 (0.015 mmol), and KO'Bu (0.25 mmol, 0.5 equiv.) followed by toluene (1 mL). Then, the tube was kept in an oil bath at 140 °C and heated for 1 h. After cooling to room temperature, respective diamine 1 (0.5 mmol) and alcohol 2 (0.75 mmol, 1.5 equiv.) were added and further heated at 140 °C for 24 h. After completion of the reaction, analytically pure products were obtained *via* column chromatography using hexane/ethyl acetate.

General procedure F for the synthesis of *N*-alkylated amines: An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (0.005 mmol), ligand L3 (0.01 mmol), and KO'Bu (0.25 mmol, 0.5 equiv.) followed by toluene (1 mL). Then, the tube was kept in an oil bath at 140 °C and heated for 1 h. After cooling to room temperature, respective amine **8** (0.5 mmol) and alcohol **2** (0.75 mmol, 1.5 equiv.) were added and further heated at 140 °C for 20 h. After

completion of the reaction, analytically pure products were obtained *via* column chromatography using hexane/ethyl acetate.

Large-scale Reaction: An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (0.075 mmol), ligand L3/L1 (0.15 mmol), and KO'Bu (5 mmol, 1 equiv.) followed by toluene (10 mL). Then, the tube was kept in an oil bath at 140 °C and heated for 1 h. After cooling to room temperature, respective diamine (5 mmol) and alcohol (12.5 mmol, 2.5 equiv.) were added and further heated at 140 °C for 24 h. After completion of the reaction, analytically pure products **3a/4a** were obtained *via* column chromatography using hexane/ethyl acetate.

Analytical data of the isolated compounds

 N^{1} , N^{2} -dibenzylbenzene-1,2-diamine (3a):² Following the general procedure A, the titled

compound was isolated as greenish liquid (115 mg, 0.399 mmol, 80% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.29 (m, 10H), 6.84-6.73 (m, 4H), 4.34 (s, 4H), 3.68 (s, *br*, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 139.6, 137.3, 128.7, 127.9, 127.4, 119.6, 112.2, 48.9 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd

for C₂₀H₂₀N₂H 289.1705; Found 289.1700.

 N^{1} , N^{2} -bis(4-methylbenzyl)benzene-1,2-diamine (3b):² Following the general procedure A, the

titled compound was isolated as greenish liquid (123 mg, 0.389 mmol, 78% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.28 (m, 4H), 7.18-7.15 (m, 4H), 6.83-6.72 (m, 4H), 4.28 (s, 4H), 3.59 (s, *br*, 2H), 2.37 (s, 6H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃)

δ 137.3, 137.0, 136.5, 129.4, 128.0, 127.9, 119.5, 112.0, 48.7, 21.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₄N₂H 317.2018; Found 317.2011.

 N^1 , N^2 -bis(4-isopropylbenzyl)benzene-1, 2-diamine (3c):² Following the general procedure A,

the titled compound was isolated as a white solid (155 mg, 0.414 mmol, 83% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 7.9 Hz, 4H), 7.21 (d, J = 8.1 Hz, 4H), 6.82-6.73 (m, 4H), 4.27 (s, 4H), 3.59 (s, *br*, 2H), 2.94-2.87 (m, 2H), 1.25 (d, J = 7.0 Hz, 12H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.1, 137.4,

136.9, 128.1, 126.8, 119.5, 111.9, 48.7, 34.0, 24.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₃₂N₂H 373.2644; Found 373.2633.

N¹, N²-bis(4-chlorobenzyl)benzene-1,2-diamine (3d):² Following the general procedure A, the

titled compound was isolated as greenish liquid (139 mg, 0.389 mmol, 78% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (m, 8H), 6.82-6.66 (m, 4H), 4.30 (s, 4H), 3.64 (s, *br*, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 138.0, 137.0, 133.1, 129.2, 128.9, 119.8, 112.4, 48.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd

for $C_{20}H_{18}Cl_2N_2H$ 357.0925; Found 357.0921.

 N^1 , N^2 -bis(4-bromobenzyl)benzene-1,2-diamine (3e):³ Following the general procedure A, the

titled compound was isolated as greenish liquid (169.5 mg, 0.379 mmol, 76% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (m, 8H), 6.82-6.66 (m, 4H), 4.30 (s, 4H), 3.64 (s, *br*, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 138.0, 137.0, 133.1, 129.2,

128.9, 119.8, 112.4, 48.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₁₈Br₂N₂H 446.9896; Found 446.9898.

N¹,N²-bis(4-methylthiobenzyl)benzene-1,2-diamine (3f): Following the general procedure A,

the titled compound was isolated as orange liquid (148 mg, 0.389 mmol, 78% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.30 (m, 4H), 7.26-7.24 (m, 4H), 6.82-6.80 (m, 2H), 6.73-6.70 (m, 2H), 4.28 (s, 4H), 3.65 (s, *br*, 2H), 2.49 (d, *J* = 2.0 Hz, 6H) ppm.¹³C {¹H} NMR (126 MHz,

CDCl₃) δ 137.4, 137.1, 136.4, 128.5, 127.1, 119.7, 112.4, 48.5, 16.1 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₄N₂S₂H 381.1459; Found 381.1458.

N¹, N²-bis(3-methoxybenzyl)benzene-1,2-diamine (3g):² Following the general procedure A,

the titled compound was isolated as a greenish liquid (132 mg, 0.379 mmol, 76% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.23 (m, 2H), 6.99-6.95 (m, 4H), 6.83-6.70 (m, 6H), 4.29 (s, 4H), 3.79 (s, 6H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.0, 141.2, 137.2, 129.7, 120.2, 119.6, 113.6, 112.7, 112.2, 55.3, 48.9 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₄N₂O₂H 349.1916; Found 349.1904.

 N^1 , N^3 -dibenzylbenzene-1, 3-diamine (3h):² Following the general procedure A, the titled

compound was isolated as greenish liquid (116 mg, 0.402 mmol, 80% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.22 (m, 10H), 6.96 (t, J = 8.0 Hz, 1H), 6.06-6.03 (m, 2H), 5.91 (t, J = 2.3 Hz,

1H), 4.26 (s, 4H), 3.91 (s, *br*, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.5, 139.8, 130.2, 128.7, 127.6, 127.3, 103.2, 97.4, 48.5 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₀N₂H 289.1705; Found 289.1703.

 N^{1} , N^{4} -dibenzylbenzene-1,4-diamine (3i):² Following the general procedure A, the titled

compound was isolated as a brownish solid (110 mg, 0.381 mmol, 76% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.24 (m, 10H), 6.56 (s, 4H), 4.25 (s, 4H), 2.97 (s, *br*, 2H) ppm. ¹³C{¹H} NMR

(101 MHz, CDCl₃) δ 140.9, 140.1, 128.7, 127.7, 127.2, 114.8, 49.7 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₀N₂H 289.1705; Found 289.1695.

1-benzyl-2-phenyl-1H-benzo[d]imidazole (4a):4 Following the general procedure B, the titled

compound was isolated as a white solid (108 mg, 0.379 mmol, 76% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 6.9 Hz, 2H), 7.47-7.45 (m, 3H), 7.35-7.30 (m, 4H), 7.24-7.20 (m, 2H), 7.11 (d, *J* = 6.6 Hz, 2H), 5.46 (s, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.3, 143.3, 136.5, 136.2,

130.2, 130.1, 129.4, 129.2, 128.9, 127.9, 126.1, 123.2, 122.8, 120.1, 110.7, 48.5 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₁₆N₂H 285.1392; Found 285.1395.

1-(4-methylbenzyl)-2-(p-tolyl)-1H-benzo[d]imidazole (4b):5 Following the general procedure

B, the titled compound was isolated as white solid (125 mg, 0.399 mmol, 80% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 7.0 Hz, 1H), 7.28 (s, 1H), 7.25 (s, 1H), 7.22-7.19 (m, 2H), 7.13 (d, J = 7.7 Hz, 2H), 7.00 (d, J = 7.7 Hz, 2H), 5.41 (s, 2H), 2.40 (s, 3H), 2.34 (s, 3H) ppm. ¹³C {¹H}

NMR (101 MHz, CDCl₃) δ 154.5, 143.3, 140.3, 137.7, 136.3, 133.6, 129.9, 129.7, 129.4, 127.3, 126.1, 123.1, 122.9, 120.0, 110.7, 48.5, 21.7, 21.3 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₀N₂H 313.1705; Found 313.1709.

1-(4-isopropylbenzyl)-2-(4-isopropylphenyl)-1H-benzo[d]imidazole (4c):4 Following the

general procedure **B**, the titled compound was isolated as a white solid (129 mg, 0.349 mmol, 70% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz, 3H), 7.21-7.18 (m, 4H), 7.04 (d, J = 8.1 Hz, 2H), 5.44 (s, 2H), 2.99-2.93 (m, 1H), 2.91-2.84 (m, 1H), 1.28 (s, 3H), 1.27 (s, 3H), 1.25 (s,

3H), 1.23 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 154.5, 151.1, 148.6, 136.2, 133.9, 129.4, 127.6, 127.2, 127.0, 126.1, 123.0, 122.7, 119.9, 110.8, 48.4, 34.2, 33.9, 24.1, 24.0 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₆H₂₈N₂H 369.2331; Found 369.2338.

1-(4-methoxybenzyl)-2-(4-methoxyphenyl)-1H-benzo[d]imidazole (4d):⁴ Following the

general procedure **B**, the titled compound was isolated as greenish liquid (127 mg, 0.369 mmol, 74% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 8.7 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 8.7 Hz, 2H), 7.35 (s, 1H), 7.07 (d, J = 8.4 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 6.96 (s, 1H), 6.90 (d, J = 8.6 Hz, 2H), 5.41 (s, 2H), 3.88 (s, 3H), 3.82 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ

161.3, 161.1, 154.3, 151.2, 130.8, 128.4, 127.4, 122.8, 122.6, 122.3, 119.7, 114.6, 114.4, 110.7, 55.5, 55.4, 48.1 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₀N₂O₂H 345.1603; Found 345.1609.

1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzo[d]imidazole (4e):⁵ Following the general

procedure **B**, the titled compound was isolated as an offwhite solid (122 mg, 0.344 mmol, 69% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.26 (t, J = 8.4 Hz, 1H), 7.18 (d, J = 7.9 Hz, 1H), 6.94 (d, J = 8.2 Hz, 2H),

5.36 (s, 2H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) *δ* 153.0, 143.2, 136.1, 135.3, 132.5, 132.2, 130.8, 129.0, 127.7, 124.8, 123.6, 123.2, 122.1, 120.3, 110.4, 48.0 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₁₄Cl₂N₂H 353.0612; Found 353.0618.

1-(4-nitrobenzyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole (4f):⁶ Following the general

procedure **B**, the titled compound was isolated as a white solid (94 mg, 0.250 mmol, 62% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.33 (t, J = 7.3 Hz, 1H), 7.26 (t, J = 8.4 Hz, 1H), 7.18 (d, J = 7.9

Hz, 1H), 6.94 (d, J = 8.2 Hz, 2H), 5.36 (s, 2H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 153.0, 143.2, 136.1, 135.3, 132.5, 132.2, 130.8, 129.0, 127.7, 124.8, 123.6, 123.2, 122.1, 120.3, 110.4, 48.0 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₄N₂O₂H 349.1916; Found 349.1919.

4-(1-(4-(diisopropyllamino)benzyl)-1H-benzo[d]imidazol-2-yl)-N, N dimethylaniline (4g):⁶

Following the general procedure **B**, the titled compound was isolated as white solid (159 mg, 0.429 mmol, 86% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.1 Hz, 2H), 7.16-7.12 (m, 1H), 7.09-7.03 (m, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 6.61 (d, *J* = 9.0 Hz, 2H), 6.54 (d, *J* = 8.7 Hz, 2H),

5.23 (s, 2H), 2.86 (s, 6H), 2.79 (s, 6H) ppm. ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃) δ 155.0, 151.3, 150.0, 143.4, 136.4, 130.3, 127.0, 124.4, 122.1, 119.3, 117.5, 112.8, 111.9, 110.4, 48.0, 40.5, 40.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₆N₄H 371.2236; Found 371.2241.

2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzo[d]imidazole (4h):4 Following the general

procedure **B**, the titled compound was isolated as a white solid (90 mg, 0.339 mmol, 68% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.78-7.77 (m, 1H), 7.60 (d, *J* = 3.2 Hz, 1H), 7.45-7.44 (m, 1H), 7.28-7.25 (m, 3H), 7.20 (t, *J* = 3.3 Hz,

1H), 6.57 (s, 1H), 6.23 (d, J = 2.8 Hz, 1H), 6.20 (t, J = 3.0 Hz, 1H), 5.56 (s, 2H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 149.6, 145.4, 144.0, 143.0, 142.7, 135.5, 123.3, 122.9, 119.8, 113.0, 112.1, 110.5, 110.0, 108.4, 41.7 ppm. HRMS (ESI) *m/z*: HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₂N₂O₂H 265.0977; Found 265.0983.

2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzo/d/imidazole (4i):⁵ Following the

general procedure **B**, the titled compound was isolated as a white solid (107 mg, 0.359 mmol, 72% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.78-7.77 (m, 1H), 7.60 (d, *J* = 3.2 Hz, 1H), 7.45-7.44 (m, 1H), 7.28-7.25 (m, 3H), 7.20 (t, *J* = 3.3 Hz, 1H), 6.57 (s, 1H), 6.23 (d, *J* = 2.8 Hz, 1H), 6.20 (t, *J* = 3.0 Hz, 1H), 5.56 (s, 2H)

ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 149.6, 145.4, 144.0, 143.0, 142.7, 135.5, 123.3, 122.9, 119.8, 113.0, 112.1, 110.5, 110.0, 108.4, 41.7 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₆H₁₂N₂S₂H 297.0520; Found 297.0528.

2-(pyridin-2-yl)-1-(pyridin-2-ylmethyl)-1H-benzo/d/imidazole (4j):⁵ Following the general

procedure **B**, the titled compound was isolated as brown solid (106 mg, 0.369 mmol, 74% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 8.59-8.55 (m, 2H), 8.51 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.82-7.79 (m, 1H), 7.47-7.43 (m, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.33-7.30 (m, 1H), 7.28-7.25 (m, 2H), 7.12-7.09 (m, 1H), 6.92 (d, J = 7.9 Hz, 1H), 6.31 (s, 2H)

ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 157.2, 150.0, 149.6, 149.0, 148.6, 142.3, 136.9, 136.8, 136.7, 124.6, 123.9, 123.8, 123.0, 122.3, 120.9, 119.9, 110.8, 51.0 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₈H₁₄N₄H 287.1297; Found 287.1296.

1-benzyl-5-methyl-2-phenyl-1H-benzo[d]imidazole (4k):⁵ Following the general procedure B,

the titled compound was isolated as a yellow solid as a mixture of isomers in 3:1 ratio (113 mg, 0.379 mmol, 76% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H

NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 8.2 Hz, 1H), 7.67-7.66 (m, 2H), 7.44-7.43 (m, 3H), 7.36-7.30 (m, 3H), 7.14 (d, J = 8.3 Hz, 1H), 7.10 (d, J = 7.1 Hz, 2H), 7.01 (s, 1H), 5.42 (s, 2H), 2.50 (s, 1H), 2.44 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 154.2, 153.8, 143.7, 141.4, 136.7, 136.5, 133.2, 132.5, 130.4, 129.8, 129.4, 129.3, 129.2, 129.1, 128.8, 127.8, 126.1, 126.0, 124.6, 124.4, 119.9, 119.6, 110.4, 110.1, 48.5, 48.4, 21.9, 21.7 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₁H₁₈N₂H 299.1548; Found 299.1546.

1-benzyl-5-chloro-2-phenyl-1H-benzo[d]imidazole (41):⁵ Following the general procedure B,

the titled compound was isolated as a yellow solid as a mixture of isomers in 2:1 ratio (111 mg, 0.350 mmol, 70% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR

(500 MHz, CDCl₃) δ 7.92 (d, *J* = 7.9 Hz, 2H), 7.72 (s, 1H), 7.66 (d, *J* = 8.6 Hz, 1H), 7.50 (s, 1H), 7.49 (s, 1H), 7.36 (t, *J* = 7.1 Hz, 1H), 7.30-7.28 (m, 2H), 7.24 (d, *J* = 7.7 Hz, 2H), 7.15 (s, 1H), 7.14-7.12 (m, 3H), 7.10-7.08 (m, 1H), 7.06 (s, 1H), 7.00 (d, *J* = 3.3 Hz, 1H), 6.99 (d, *J* = 3.3 Hz, 1H), 6.91 (s, 1H), 6.89-6.86 (m, 3H), 5.23 (s, 2H), 5.21 (s, 1H) ppm. ¹³C{¹H} (126 MHz, CDCl₃) δ 155.4, 155.0, 143.5, 141.3, 136.6, 135.9, 135.8, 134.5, 133.1, 130.5, 130.1, 129.4, 129.4, 129.3, 129.0, 128.7, 128.4, 128.2, 128.1, 126.0, 126.0, 123.8, 120.8, 119.7, 111.5, 110.7, 48.6 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₁₅ClN₂H 319.1002; Found 319.1010.

2-cyclohexyl-1-(cyclohexylmethyl)-1H-benzo/d/imidazole (4m):⁷ Following the general

procedure **B**, the titled compound was isolated as a brown liquid (71 mg, 0.239 mmol, 48% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.77-7.76 (m, 1H), 7.29-7.28 (m, 1H), 7.23-7.21 (m, 2H), 3.94 (d, *J* = 7.5 Hz, 2H), 2.83-2.78 (m, 1H), 1.96-1.88 (m, 6H), 1.84-1.82 (m, 1H), 1.77-1.68 (m, 6H), 1.65-1.63 (m, 2H), 1.41-1.40 (m, 2H), 1.08-1.04 (m, 2H), 0.89-0.83

(m, 2H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.4, 122.1, 119.2, 109.9, 50.0, 38.8, 36.6, 32.2, 31.2, 26.6, 26.3, 25.9, 25.9 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₈N₂H 297.2331; Found 297.2330.

1-butyl-2-propyl-1H-benzo[d]imidazole (4n):⁸ Following the general procedure B, the titled

compound was isolated as brownish liquid (69 mg, 0.319 mmol, 64% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.74-7.72 (m, 1H), 7.31-7.29 (m, 1H), 7.24-7.22 (m, 2H), 4.10 (t, *J* = 7.5 Hz, 2H), 2.85 (t, *J* = 7.6 Hz, 2H), 1.98-1.91 (m, 2H), 1.82-1.76 (m, 2H), 1.44-1.40 (m, 2H), 1.08 (t, *J* = 6.8 Hz, 3H), 0.97 (t, *J* = 7.4

Hz, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 154.9, 142.5, 135.1, 122.1, 121.9, 119.2, 109.3, 43.6, 32.1, 29.5, 21.4, 20.4, 14.2, 13.9 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₀N₂H 217.1705; Found 217.1712.

2-phenyl-1H-benzo[d]imidazole (6a):4 Following the general procedure C/D, the titled

compound was isolated as a yellow solid (76 mg, 0.390 mmol, 78% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane).¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 9.4 Hz, 2H), 7.65 (s, *br*, 2H), 7.51-7.46 (m, 3H), 7.30-7.27 (m, 2H)

ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 137.7, 133.3, 130.7, 130.3, 129.2, 129.0, 128.5, 128.3, 126.9, 123.6, 115.1, 97.4, 96.3 ppm. HRMS (ESI) *m/z*: [M + H]⁺Calcd for C₁₃H₁₀N₂H 195.0922; Found 195.0930.

2-(p-tolyl)-1H-benzo[d]imidazole (6b):⁴ Following the general procedure C/D, the titled compound was isolated as greenish liquid (79 mg, 0.379 mmol, 76% yield) using silica gel column

chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, DMSO- d_6) δ 12.83 (s, *br*, 1H), 8.06 (d, *J* = 7.9 Hz, 2H), 7.57 (s, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.18 (s, 2H), 2.38 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 151.4, 139.6, 129.5, 127.5, 126.4, 122.1, 106.5, 103.5, 21.0 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₂N₂H 209.1078; Found 209.1085.

2-(4-isopropylphenyl)-1H-benzo[d]imidazole (6c):9 Following the general procedure C/D, the

titled compound was isolated as a yellow solid (139 mg, 0.389 mmol, 78% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.85 (s, *br*, 1H), 8.10 (d, *J* = 7.9 Hz, 2H), 7.58 (dd, *J* = 52.0,

7.8 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 4.5 Hz, 2H), 2.99-2.92 (m, 1H), 1.25 (s, 3H), 1.23 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 151.4, 150.4, 143.9, 135.0, 127.9, 127.0, 126.6, 122.4, 121.6, 118.8, 111.3, 33.4, 23.7 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₂H₂₄N₂O₂H 349.1916; Found 349.1904.

2-(4-methoxyphenyl)-1H-benzo[d]imidazole (6d):⁵ Following the general procedure C/D, the

titled compound was isolated as a yellow solid (87 mg, 0.389 mmol, 78% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.77 (s, *br*, 1H), 8.13 (d, *J* = 8.8 Hz, 2H), 7.57

(s, 2H), 7.17 (d, J = 6.0 Hz, 2H), 7.11 (d, J = 8.9 Hz, 2H), 3.83 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 160.7, 151.4, 131.4, 130.6, 128.1, 122.7, 121.9, 114.4, 55.4 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₂N₂OH 225.1028; Found 225.1035.

2-(4-bromophenyl)-1H-benzo[d]imidazole (6e):4 Following the general procedure C/D, the

titled compound was isolated as a white solid (95 mg, 0.349 mmol, 70% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, DMSO- d_6) δ 13.02 (s, *br*, 1H), 8.12 (d, *J* = 8.4 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.61 (s,

2H), 7.22 (s, 2H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 151.3, 150.3, 132.1, 131.7, 131.3, 129.9, 129.4, 129.0, 128.4, 126.5, 123.3 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₉BrN₂H 273.0027; Found 273.0026.

2-(3-bromophenyl)-1H-benzo[d]imidazole (6f):10 Following the general procedure C/D, the

titled compound was isolated as a yellow solid (94 mg, 0.344 mmol, 69% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, DMSO- d_6) δ 13.04 (s, *br*, 1H), 8.38 (s, 1H), 8.18 (s, 1H), 7.69 (s, 2H), 7.54 (d,

J = 7.9 Hz, 2H), 7.23 (d, J = 6.0 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 149.6, 143.7, 135.0, 132.5, 131.2, 128.9, 125.4, 123.0, 122.3, 122.0, 119.1, 111.6, 82.4 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₉BrN₂H 273.0027; Found 273.0026.

2-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (6g):4 Following the general procedure

C/D, the titled compound was isolated as yellow solid (88 mg, 0.334 mmol, 67% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.19 (s, *br*,1H), 8.39 (d, *J* = 8.3 Hz,

2H), 7.93 (d, J = 8.3 Hz, 2H), 7.71 (d, J = 7.7 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.29-7.21 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 149.7, 143.7, 135.1, 134.0, 129.8, 129.5, 127.1, 126.0, 125.5, 123.3, 122.8, 122.1, 119.3, 111.7 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₉F₃N₂H 263.0796 Found 263.0804.

2-(naphthalen-1-yl)-1H-benzo[d]imidazole (6h):⁴ Following the general procedure C/D, the

titled compound was isolated as a yellow solid (85 mg, 0.349 mmol, 70% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃ + DMSO- d_6) δ 8.38 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 8.2 Hz, 1H),

7.47 (d, J = 6.7 Hz, 2H), 7.28 (s, 1H), 7.25-7.24 (m, 1H), 7.22-7.20 (m, 1H), 7.14-7.07 (m, 3H), 6.79-6.78 (m,2H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃ + DMSO-*d*₆) δ 150.8, 132.9, 132.5, 130.2, 129.3, 129.2, 127.5, 127.3, 127.2, 127.1, 126.2, 125.4, 125.4, 124.1, 121.4 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₂N₂H 245.1079; Found 245.1069.

2-(pyridin-2-yl)-1H-benzo/d/imidazole (6i):⁵ Following the general procedure C, the titled

compound was isolated as a brown solid (72 mg, 0.369 mmol, 74% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, DMSO- d_6) δ 13.09 (s, *br*, 1H), 8.72 (t, *J* = 4.2 Hz, 1H), 8.33 (d, *J* = 7.9 Hz, 1H), 7.99 (t, *J* =

6.0 Hz, 1H), 7.69 (s, 2H), 7.53-7.49 (m, 1H), 7.23 (d, J = 6.8 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 150.7, 149.4, 148.5, 137.6, 124.7, 122.6, 121.4, 119.3, 112.1 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₉N₃H 196.0875; Found 196.0865.

2-phenylquinoxaline (6j):¹² Following the general procedure D, the titled compound was

isolated as a dark brown liquid (75 mg, 0.364 mmol, 73% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 8.21-8.19 (m, 2H), 8.17-8.12 (m, 2H), 7.80-7.73 (m, 2H), 7.59-7.52 (m, 3H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.0, 143.5, 142.4, 141.7, 136.9, 130.4, 130.3, 129.7, 129.7, 129.3, 129.2, 127.7 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₀N₂H 207.0922; Found 207.0927.

5-bromo-2-phenyl-1H-benzo/d/imidazole (6k):¹¹ Following the general procedure D, the titled

compound was isolated as yellow solid (93 mg, 0.339 mmol, 68% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, DMSO- d_6) δ 7.97-7.94 (m, 2H), 7.70 (d, J = 2.0 Hz, 1H), 7.49-7.45 (m, 4H), 7.28-7.25 (m, 1H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ

153.9, 147.8, 141.3, 138.6, 132.1, 130.5, 129.7, 127.7, 126.9, 118.8, 117.6, 116.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₉BrN₂H 273.0027; Found 273.0015.

2-pentyl-1H-benzo[d]imidazole (61):4 Following the general procedure C, the titled compound

was isolated as a brown liquid (66 mg, 0.349 mmol, 70% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.56-7.54 (m, 2H), 7.22-7.21 (m, 2H), 5.66 (s, *br*, 1H), 2.93 (t, *J* = 7.6 Hz, 2H), 1.87-1.83 (m, 2H), 1.33-

1.25 (m, 4H), 0.85 (t, J = 6.5 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 155.3, 138.2, 122.5, 114.7, 31.6, 29.3, 28.1, 22.5, 14.0 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₆N₂H 189.1392; Found 189.1394.

2-cyclohexyl-1H-benzo[d]imidazole (6m):⁴ Following the general procedure C, the titled

compound was isolated as orange liquid (62 mg, 0.309 mmol, 62% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.56-7.54 (m, 2H), 7.22-7.20 (m, 2H), 4.82 (s, *br*, 1H), 2.97-2.91 (m, 1H), 2.15

(d, J = 14.2 Hz, 2H), 1.88-1.84 (m, 2H), 1.75 (d, J = 14.5 Hz, 1H), 1.71-1.63 (m, 3H), 1.45-1.41 (m, 1H), 1.39-1.36 (m, 1H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.9, 127.7, 122.5, 114.8, 109.9, 91.5, 38.6, 32.0, 26.1, 25.9 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₆N₂H 201.1392; Found 201.1394.

2-(2,6-dimethylhept-5-en-1-yl)-1H-benzo[d]imidazole (6n):4 Following the general procedure

C, the titled compound was isolated as a brown liquid (85 mg, 0.349 mmol, 70% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.54-7.52 (m, 2H), 7.20-7.18 (m, 2H),

5.00 (s, *br*, 1H), 2.92-2.88 (m, 1H), 2.71-2.67 (m, 1H), 2.09-1.98 (m, 3H), 1.91 (s, 1H), 1.67 (s, 1H), 1.62 (s, 2H), 1.60 (s, 1H), 1.53-1.52 (m, 2H), 1.40 (d, J = 6.9 Hz, 1H), 1.03 (d, J = 6.3 Hz, 1H), 0.92-0.90 (m, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 154.6, 137.9, 131.7, 131.5, 124.6, 124.3, 122.5, 114.6, 37.1, 37.0, 36.6, 34.1, 33.0 25.7, 25.6, 19.9, 19.6, 17.7 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₆H₂₂N₂H 243.1861; Found 243.1864.

N¹-benzylbenzene-1,2-diamine (7a):² Following the general procedure E, the titled compound

was isolated as brownish liquid (79 mg, 0.399 mmol, 80% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.38 (m, 4H), 7.35-7.31 (m, 1H), 6.85 (t, *J* = 7.5 Hz, 1H), 6.78-6.71 (m, 3H), 4.35 (s, 2H), 3.38 (s, *br*, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃)

 δ 139.5, 137.8, 134.3, 128.7, 127.9, 127.4, 120.8, 118.9, 116.6, 112.1, 48.7 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₄N₂H 199.1235; Found 199.1238.

N¹-benzylbenzene-1,3-diamine (7b):² Following the general procedure E, the titled compound

was isolated as brownish liquid (139 mg, 0.389 mmol, 78% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.22 (m, 4H), 7.20-7.15 (m, 1H), 6.86 (t, *J* = 7.9 Hz, 1H), 6.00-5.99 (m, 2H), 5.89 (s, 1H), 4.19 (s, 2H), 3.41 (s, *br*, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.4, 147.5, 139.7,

130.2, 128.7, 127.6, 127.3, 105.3, 104.3, 99.7, 48.4 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₄N₂H 199.1235; Found 199.1238.

N²-benzylpyridine-2,6-diamine (7c):² Following the general procedure E, the titled compound

was isolated as a greenish solid (77.7 mg, 0.389 mmol, 78% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.31 (m, 4H), 7.28 (s, 1H), 7.24-7.20 (m, 1H), 5.85 (d, *J* = 7.8 Hz, 1H), 5.76 (d, *J* = 8.0 Hz, 1H), 4.83 (s, *br*, 1H, NH), 4.42 (d, *J* = 5.8 Hz, 2H), 4.28 (s, *br*, 2H, NH₂) ppm. ¹³C{¹H} NMR

(101 MHz, CDCl₃) δ 158.1, 157.7, 139.7, 139.5, 128.7, 127.4, 127.2, 97.3, 95.7, 46.5 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₃N₃H 200.1188; Found 200.1183.

4-((4-aminophenyl)sulfonyl)-N-benzylaniline (7d):² Following the general procedure E, the

titled compound was isolated as a yellow solid (100 mg, 0.295 mmol, 65% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.64 (m, 4H), 7.36-7.33 (m, 2H), 7.31-7.28 (m, 2H), 6.63-6.57 (m, 4H),

4.34 (d, J = 5.2 Hz, 2H), 4.06 (s, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.4, 150.5, 138.1, 131.6, 130.2, 129.3, 129.0, 127.8, 127.5, 114.3, 112.2, 47.8 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₁₈N₂O₂SH 339.1167; Found 339.1160.

N-benzylaniline (9a):¹³ Following the general procedure F, the titled compound was isolated

as a yellow liquid (79 mg, 0.429 mmol, 86% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.34 (m, 4H), 7.31-7.28 (m, 1H), 7.21-7.17 (m, 2H), 6.74 (t, *J* = 7.3 Hz, 1H), 6.66 (d, *J* = 7.5 Hz, 2H), 4.35 (s, 2H), 4.04 (s, 1H) ppm. ¹³C{¹H} NMR (101

MHz, CDCl₃) *δ* 148.3, 139.6, 129.4, 128.8, 127.6, 127.4, 117.7, 113.0, 48.5 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₃NH 184.1126; Found 184.1129.

N-benzyl-4-methoxyaniline (9b):¹³ Following the general procedure F, the titled compound

was isolated as a yellow liquid (85 mg, 0.400 mmol, 80% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.22 (m, 4H), 7.19-7.12 (m, 1H), 6.68 (d, J = 8.9 Hz, 2H), 6.50 (d, J = 8.9 Hz, 2H), 4.17 (s, 2H), 3.63 (s, 3H)

ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.3, 142.6, 139.8, 128.7, 127.7, 127.2, 114.9, 114.0, 55.9, 49.3 ppm. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₄H₁₅NOH 214.1232; Found 214.1238.

N-benzyl-4-chloroaniline (9c):¹³ Following the general procedure **F**, the titled compound was

isolated as a yellow liquid (91 mg, 0.400 mmol, 84% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 2.7 Hz, 4H), 7.23-7.19 (m, 1H), 7.04-7.02 (m, 2H), 6.44 (d, J = 8.9 Hz, 2H), 4.19 (s, 2H), 3.95 (s, 1H) ppm. ¹³C{¹H}

NMR (101 MHz, CDCl₃) δ 146.7, 139.0, 129.1, 128.8, 127.5, 127.4, 122.1, 114.0, 48.3 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₂ClNH 218.0737; Found 218.0740.

N-benzyl-4-bromoaniline (9d):¹³ Following the general procedure **F**, the titled compound was

isolated as a yellow liquid (105 mg, 0.400 mmol, 80% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.41 (m, 4H), 7.38-7.35 (m,1H), 7.18 (d, *J* = 8.9 Hz, 2H), 6.59 (d, *J* = 8.9 Hz, 2H), 4.34 (s, 2H), 4.10 (s, 1H) ppm. ¹³C{¹H}

NMR (101 MHz, CDCl₃) δ 146.7, 139.0, 129.1, 128.8, 127.5, 127.4, 122.1, 114.0, 48.3 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₂BrNH 262.0231; Found 262.0237.

N-benzyl-3-bromoaniline (9e):¹³ Following the general procedure **F**, the titled compound was

isolated as a yellow liquid (102 mg, 0.389 mmol, 78% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.36 (m, 4H), 7.33-7.29 (m, 1H), 7.02 (t, *J* = 8.1 Hz, 1H), 6.84 (d, *J* = 7.9 Hz, 1H), 6.79 (s, 1H), 6.55 (d, *J*= 8.2Hz, 1H),

4.31 (s, 2H), 4.10 (s, *br*, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.5, 138.8, 130.6, 128.9, 127.6, 127.6, 123.4, 120.4, 115.5, 111.6, 48.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₂BrNH 262.0231; Found 262.0237.

N-benzyl-3,5-dimethylaniline (9f):¹³ Following the general procedure F, the titled compound

was isolated as an orange liquid (72 mg, 0.339 mmol, 68% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 1H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.18 (d, *J* = 6.5 Hz, 1H), 7.15 (s, 1H), 6.29 (s, 1H), 6.19 (s, 2H), 4.21 (s, 2H), 3.80 (s, *br*, 1H), 2.13 (s, 6H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.5, 139.8,

139.1, 128.7, 127.7, 127.3, 119.8, 110.9, 48.5, 21.6 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₅H₁₇NH 212.1439; Found 212.1444.

N-benzylnaphthalen-2-amine (9g):¹³ Following the general procedure F, the titled compound

was isolated as a yellow liquid (82 mg, 0.349 mmol, 70% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (t, *J* = 8.5 Hz, 2H), 7.48-7.44 (m, 4H), 7.41-7.37 (m, 3H), 7.34 (d, *J* = 7.0 Hz, 2H), 7.28 (s, 1H), 6.65 (d, *J* = 7.5 Hz,

1H), 4.52 (s, 2H) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 143.3, 139.2, 134.4, 128.9, 128.8, 127.9, 127.5, 126.7, 125.9, 124.9, 123.5, 120.0, 117.8, 104.9, 48.8 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₅NH 234.1283; Found 234.1289.

N-benzylquinolin-8-amine (9h):¹³ Following the general procedure F, the titled compound

was isolated as a yellow liquid (82 mg, 0.349 mmol, 70% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, *J* = 4.2 Hz, 1H), 8.08 (d, *J* = 8.3 Hz, 1H), 7.47 (d, *J* = 7.2 Hz, 2H), 7.40-7.33 (m, 4H), 7.31-7.28 (m, 1H), 7.08 (d, *J* = 8.2

Hz, 1H), 6.67 (d, J = 7.7 Hz, 1H), 6.64 (s, br, 1H), 4.58 (d, J = 4.8 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.0, 144.7, 139.4, 138.3, 136.1, 128.8, 128.7, 127.9, 127.5, 127.2, 121.5, 114.2, 105.2, 47.9 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₄N₂H 235.1235; Found 235.1241.

N-(4-chlorobenzyl)aniline (9i):¹³ Following the general procedure **F**, the titled compound was

isolated as a yellow liquid (83 mg, 0.379 mmol, 76% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 4H), 7.20 (t, J = 7.2 Hz, 2H), 6.76 (t, J = 7.6 Hz, 1H), 6.64 (d, J = 8.7 Hz, 2H), 4.33 (s, 2H), 4.07

(s, *br*, 1H) ppm .¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.9, 138.1, 133.0, 129.5, 128.9, 128.7, 118.0, 113.1, 47.7 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₂ClNH 218.0737; Found 218.0742.

N-(4-bromobenzyl)aniline (9j):¹³ Following the general procedure **F**, the titled compound was

isolated as a yellow liquid (92 mg, 0.349 mmol, 70% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.41 (m, 4H), 7.38-7.36 (m, 1H), 7.18 (d, *J*= 9.0 Hz, 2H), 6.59 (d, *J* = 8.9 Hz, 2H), 4.34 (s, 2H), 4.10 (s, *br*, 1H) ppm. ¹³C{¹H}

NMR (101 MHz, CDCl₃) δ 146.7, 139.0, 129.1, 128.8, 127.5, 127.4, 122.1, 114.0, 48.3 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₂BrNH 262.0231; Found 262.0237.

N-(4-methylbenzyl)aniline (9k):¹³ Following the general procedure F, the titled compound was

isolated as a yellow liquid (77 mg, 0.389 mmol, 78% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 2H), 7.18-7.13 (m, 4H), 6.70 (t, *J* = 7.4 Hz, 1H), 6.62 (d, *J* = 7.9 Hz, 2H), 4.27 (s, 2H), 3.97 (s, *br*, 1H), 2.33 (s, 3H) ppm. ¹³C{¹H}

NMR (101 MHz, CDCl₃) δ 148.4, 137.0, 136.5, 129.4, 129.4, 127.7, 117.6, 112.9, 48.2, 21.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₅NH 198.1283; Found 198.1289.

N-(4-isopropylbenzyl)aniline (91):¹³ Following the general procedure F, the titled compound

was isolated as a yellow liquid (84 mg, 0.374 mmol, 75% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.0 Hz, 2H), 7.21 (s, 1H), 7.19-7.13 (m, 4H), 6.68 (t, J = 7.4 Hz, 1H), 6.61 (d, J = 7.7 Hz, 2H), 4.25 (s, 2H), 2.91-2.84 (m, 1H), 1.23 (s, 3H), 1.21 (s, 3H) ppm. ¹³C{¹H} NMR

(101 MHz, CDCl₃) δ 148.4, 148.1, 136.9, 129.4, 127.8, 126.8, 117.6, 113.0, 48.2, 33.9, 24.2 ppm. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₆H₁₉NH 226.1596; Found 226.1599.

N-(3-methylbenzyl)aniline (9m):¹³ Following the general procedure F, the titled compound

was isolated as a yellow liquid (67 mg, 0.339 mmol, 68% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.54 (m, 1H), 7.44-7.41 (m, 5H), 7.00-6.94 (m, 1H), 6.85-6.82 (m, 2H), 4.46 (s, 2H),

3.98 (s, *br*, 1H), 2.61 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.3, 137.0, 136.3, 130.4, 129.3, 128.2, 127.4, 126.2, 117.4, 112.7, 46.3, 18.9 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₅NH 198.1283; Found 198.1289.

N-benzylpyridin-2-amine (9n):¹³ Following the general procedure **F**, the titled compound was

isolated as a yellow liquid (59 mg, 0.319 mmol, 64% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 5.1 Hz, 1H), 7.31-7.22 (m, 5H), 7.19-7.16 (m, 1H), 6.48 (t, J = 6.5 Hz, 1H), 6.27 (d, J = 8.3 Hz,

1H), 5.05 (s, *br*, 1H), 4.40 (d, J = 5.7 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.8, 148.3, 139.3, 137.6, 128.7, 127.5, 127.2, 113.1, 106.9, 46.4 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₂N₂H 185.1079; Found 185.1072.

N-(benzo[d][1,3]dioxol-5-ylmethyl)aniline (90):13 Following the general procedure F, the

titled compound was isolated as a yellow liquid (84 mg, 0.369 mmol, 74% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, *J* = 7.6 Hz, 2H), 6.90 (s, 1H), 6.87-6.80 (m, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 6.66 (d, *J* = 8.1 Hz, 2H), 5.96 (s, 2H), 4.25 (s,

2H), 3.99 (s, *br*, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.1, 148.0, 146.8, 133.4, 129.3, 120.7, 117.7, 112.9, 108.5, 108.1, 101.1, 48.3 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₃NO₂H 228.1025; Found 228.1029.

N-(pyridin-2-ylmethyl)aniline (9p):¹³ Following the general procedure **F**, the titled compound

was isolated as a yellow liquid (73 mg, 0.394 mmol, 79% yield) using silica gel column chromatography (5-10% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, J = 4.7 Hz, 1H), 7.66-7.62 (m, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.19 (t, J = 7.9 Hz, 3H),

6.73 (t, J = 7.2 Hz, 1H), 6.68 (d, J = 8.5 Hz, 2H), 4.47 (s, 2H), 4.14 (s, *br*, 1H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.7, 149.3, 148.1, 136.8, 129.4, 122.2, 121.8, 117.8, 113.2, 49.4 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₂N₂H 185.1079; Found 185.1072.

¹H and ¹³C{¹H} NMR spectra of the isolated compounds from catalytic reactions

Figure S1. ¹H NMR spectrum of 3a in CDCl₃.

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum of **3a** in CDCl₃.

Figure S4. ¹³C{¹H} NMR spectrum of **3b** in CDCl₃.

Figure S5. ¹H NMR spectrum of 3c in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S6. $^{13}C{^{1}H}$ NMR spectrum of 3c in CDCl₃.

Figure S7. ¹H NMR spectrum of 3d in CDCl₃.

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum of 3d in CDCl₃.

Figure S9. ¹H NMR spectrum of 3e in CDCl₃.

Figure S10. ¹³C{¹H} NMR spectrum of 3e in CDCl₃.

Figure S11. ¹H NMR spectrum of **3f** in CDCl₃.

Figure S12. ¹³C{¹H} NMR spectrum of 3f in CDCl₃.

Figure S14. ¹³C{¹H} NMR spectrum of **3g** in CDCl₃.

Figure S15. ¹H NMR spectrum of **3h** in CDCl₃.

Figure S16. ¹³C{¹H} NMR spectrum of **3h** in CDCl₃.

Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum of 3i in CDCl₃.

Figure S20. ${}^{13}C{}^{1}H$ NMR spectrum of 4a in CDCl₃.

Figure S22. ¹³C{¹H} NMR spectrum of 4b in CDCl₃.

Figure S23. ¹H NMR spectrum of 4c in CDCl₃.

Figure S24. ¹³C{¹H} NMR spectrum of 4c in CDCl₃.

Figure S26. ¹³C{¹H} NMR spectrum of 4d in CDCl₃.

Figure S27. ¹H NMR spectrum of 4e in CDCl₃.

Figure S28. ¹³C{¹H} NMR spectrum of 4e in CDCl₃.

Figure S30. ${}^{13}C{}^{1}H$ NMR spectrum of 4f in CDCl₃.

Figure S32. ${}^{13}C{}^{1}H$ NMR spectrum of 4g in CDCl₃

Figure S34. ¹³C{¹H} NMR spectrum of 4h in CDCl₃.

Figure S36. ¹³C{¹H} NMR spectrum of 4i in CDCl₃.

Figure S38. ¹³C{¹H} NMR spectrum of 4j in CDCl₃.

Figure S40. ¹³C{¹H} NMR spectrum of 4k in CDCl₃.

Figure S42. ¹³C{¹H} NMR spectrum of 4l in CDCl₃.

Figure S43. ¹H NMR spectrum of 4m in CDCl₃.

Figure S44. ¹³C{¹H} NMR spectrum of 4m in CDCl₃.

Figure S46. ¹³C{¹H} NMR spectrum of 4n in CDCl₃.

Figure S47. ¹H NMR spectrum of 6a in CDCl₃.

Figure S48. ¹³C{¹H} NMR spectrum of 6a in CDCl₃.

Figure S49. ¹H NMR spectrum of **6b** in DMSO- d_6 . * indicates the solvent impurity of H₂O.

Figure S50. ${}^{13}C{}^{1}H$ NMR spectrum of 6b in DMSO- d_6 .

Figure S51. ¹H NMR spectrum of 6c in DMSO- d_6 . * indicates the solvent impurity of H₂O.

Figure S52. ¹³C{¹H} NMR spectrum of 6c in DMSO- d_6 .

Figure S53. ¹H NMR spectrum of 6d in DMSO- d_6 . * indicates the solvent impurity of H₂O.

S50

Figure S55. ¹H NMR spectrum of 6e in DMSO-*d*₆. * indicates the solvent impurity of H₂O.

Figure S56. ¹³C{¹H} NMR spectrum of 6e in DMSO- d_6 .

Figure S57. ¹H NMR spectrum of 6f in DMSO- d_6 . * indicates the solvent impurity of H₂O.

Figure S58. ${}^{13}C{}^{1}H$ NMR spectrum of 6f in DMSO- d_6 .

Figure S59. ¹H NMR spectrum of 6g in DMSO- d_6 . * indicates the solvent impurity of H₂O.

Figure S60. ¹³C $\{^{1}H\}$ NMR spectrum of 6g in DMSO- d_{6} .

Figure S62. ¹³C{¹H} NMR spectrum of 6h in CDCl₃.

Figure S63. ¹H NMR spectrum of 6i in DMSO-*d*₆. * indicates the solvent impurity of H₂O.

Figure S64. ¹³C{¹H} NMR spectrum of 6i in DMSO-*d*₆.

Figure S65. ¹H NMR spectrum of 6j in CDCl₃.

Figure S66. ${}^{13}C{}^{1}H$ NMR spectrum of 6j in CDCl₃.

Figure S67. ¹H NMR spectrum of 6k in DMSO- d_6 . * indicates the solvent impurity of H₂O.

Figure S68. ${}^{13}C{}^{1}H$ NMR spectrum of 6k in DMSO- d_6 .

Figure S70. ¹³C{¹H} NMR spectrum of 6l in CDCl₃.

Figure S71. ¹H NMR spectrum of 6m in CDCl₃.

Figure S72. ¹³C{¹H} NMR spectrum of 6m in CDCl₃.

Figure S73. ¹H NMR spectrum of 6n in CDCl₃.

Figure S74. ¹³C{¹H} NMR spectrum of 6n in CDCl₃.

Figure S76. ¹³C{¹H} NMR spectrum of 7a in CDCl₃.

Figure S78. ¹³C{¹H} NMR spectrum of 7b in CDCl₃.

Figure S79. ¹H NMR spectrum of 7c in CDCl₃.

Figure S80. ${}^{13}C{}^{1}H$ NMR spectrum of 7c in CDCl₃.

Figure S82. ${}^{13}C{}^{1}H$ NMR spectrum of 7d in CDCl₃.

Figure S84. ¹³C{¹H} NMR spectrum of 9a in CDCl₃.

Figure S86. ¹³C{¹H} NMR spectrum of 9b in CDCl₃.

Figure S88. ¹³C{¹H} NMR spectrum of 9c in CDCl₃.

Figure S90. ¹³C{¹H} NMR spectrum of 9d in CDCl₃.

Figure S92. ¹³C{¹H} NMR spectrum of 9e in CDCl₃.

Figure S94. ¹³C{¹H} NMR spectrum of 9f in CDCl₃.

Figure S96. ¹³C{¹H} NMR spectrum of 9g in CDCl₃.

Figure S100. ¹³C{¹H} NMR spectrum of 9i in CDCl₃.

Figure S102. ¹³C{¹H} NMR spectrum of 9j in CDCl₃.

S75

Figure S106. ¹³C{¹H} NMR spectrum of 9l in CDCl₃.

Figure S108. ${}^{13}C{}^{1}H$ NMR spectrum of 9m in CDCl₃.

Figure S110. ${}^{13}C{}^{1}H$ NMR spectrum of 9n in CDCl₃.

Figure S112. ¹³C{¹H} NMR spectrum of 90 in CDCl₃.

Figure S114. ¹³C{¹H} NMR spectrum of **9p** in CDCl₃.

General procedure for the post modification of isolated compounds

i) Synthesis of benzimidazolium salt 10a-b: Following the previous report,² an oven-dried Schlenk tube (25 mL) was charged with 3a/3d (1.8 mmol), followed by the addition of triethyl orthoformate (220 µL, 3.3 equiv.) and con. HCl (220 µL, 18 equiv.). After that, the reaction mixture was stirred at 120 °C for 6 h and following that the reaction mixture was allowed to cool to room temperature and ether was added to the precipitate white colour products 10a-b in 86-90% yield.

ii) Synthesis of Complex 11a-b: Following the previous report,³ an oven-dried Schlenk tube (25 mL) was charged with **6k** (0.256 mmol, 1 equiv.) followed by the addition of dry methanol (3 mL). To this, an appropriate metal salt { $[Ru(p-cym)Cl_2]_2, 0.5$ equiv./ $[Mn(CO)_5Br], 1$ equiv.} dissolved in DCM was added and the reaction mixture was stirred at room temperature for 12 h. Following that NH₄PF₆ (1 equiv.) was added for complex **11a** and the reaction was then stirred for two hours. The resulting precipitates generated for both cases were filtered and washed with diethyl ether giving the corresponding products **11a-b** in 78-90% yield.

iii) Unsymmetrical *N*-alkylation of 7c-d: An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (1.5 mol%), ligand L3 (3 mol%), and KO^tBu (0.5 mmol, 1 equiv.) followed by the addition of toluene (1 mL). Then, the tube was kept in an oil bath at 140 °C and heated for 1 h. After cooling to room temperature, respective alkylated diamines 7c-d (0.5 mmol) and substituted benzyl alcohols (0.75 mmol, 1.5 equiv.) were added and further heated at 140 °C for 24-36 h. After completion of the reaction, analytically pure unsymmetrically dialkylated diamines were obtained *via* column chromatography using hexane/ethyl acetate.

Analytical data of compounds obtained via post-synthetic modifications

1,3-bis(4-c-1H-benzo/d/imidazol-3-ium chloride (10a):¹⁴ Following the general procedure (i),

the titled compound was isolated as a white solid (566 mg, 1.69 mmol, 90% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 10.46 (s, 1H), 8.00-7.98 (m, 2H), 7.63-7.61 (m, 2H), 7.56 (d, J = 7.9 Hz, 4H), 7.42 (d, J = 8.2 Hz, 3H), 7.40-7.35 (m, 3H), 5.84 (s, 4H) ppm. ¹³C {¹H} NMR (101 MHz, DMSO- d_6) δ 142.9, 134.1, 131.1, 129.0, 128.8, 128.4, 126.8, 114.1, 50.0 ppm. HRMS (ESI) *m/z*: [M - Cl]⁺ Calcd for C₂₁H₁₉N₂ 299.1548; Found 299.1552.

1,3-bis(4-chlorobenzyl)-1H-benzo[d]imidazol-3-ium chloride (10b):15 Following the general

procedure (i), the titled compound was isolated as a yellow solid (653 mg, 1.62 mmol, 86% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 10.36 (s, 1H), 7.98-7.97 (m, 2H), 7.61 (d, J = 7.6 Hz, 6H), 7.49 (d, J = 7.7 Hz, 4H), 5.83 (s, 4H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 143.1, 133.5, 132.9, 131.0, 130.5, 129.0, 126.8, 114.0, 49.3 ppm. HRMS (ESI) *m/z*: [M - Cl]⁺ Calcd for C₂₁H₁₇Cl₂N₂ 367.0769; Found

367.0775.

 N^2 -benzyl- N^6 -(4-methoxybenzyl)pyridine-2,6-diamine (12a):² Following the general

procedure (iii), the titled compound was isolated as greenish liquid (136 mg, 0.42 mmol, 85% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.21 (m, 4H), 7.18-7.16 (m, 3H), 7.11 (t, *J* = 7.8 Hz, 1H), 6.76 (d, *J* = 8.6 Hz, 2H), 5.64 (d, *J* = 7.8 Hz, 2H), 4.59 (t, *J* = 6.4 Hz, 1H),

4.52 (t, J = 5.7 Hz, 1H), 4.35 (d, J = 5.8 Hz, 2H), 4.26 (d, J = 5.6 Hz, 2H), 3.70 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.8, 158.1, 139.9, 139.2, 131.8, 128.9, 128.6, 127.6, 127.1, 114.0, 95.2, 55.4, 46.4, 45.9 ppm. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₀H₂₁N₃OH 320.1763; Found 320.1755.

N²-benzyl-N⁶-(4-methylbenzyl)pyridine-2,6-diamine (12b):² Following the general procedure

(iii), the titled compound was isolated as greenish liquid (124 mg, 0.41 mmol, 82% yield) using silica gel column chromatography (10-15% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.29 (m, 4H), 7.27-7.25 (m, 1H), 7.24-7.11 (m, 5H), 5.73 (d, *J* = 7.9 Hz, 2H),

4.64-4.59 (m, 2H,), 4.43 (d, J = 5.8 Hz, 2H), 4.38 (d, J = 5.7 Hz, 2H), 2.33 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.2, 158.2, 139.9, 139.3, 136.8, 129.3, 128.7, 127.6, 127.2, 95.3, 95.2, 46.5, 46.3, 21.2 ppm. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₂₀H₂₁N₃H 304.1814; Found 304.1806.

N-benzyl-4-({4-[(4-methylbenzyl)amino]phenyl}sulfonyl)-aniline (12c):² Following the

general procedure (iii), the titled compound was isolated as greenish liquid (159 mg, 0.34 mmol, 72% yield) using silica gel column chromatography (30-40% ethyl acetate in hexane). ¹H NMR (500 MHz,

CDCl₃) δ 7.67-7.65 (m, 4H), 7.36-7.29 (m, 5H), 7.20-7.14 (m, 4H), 6.58-6.56 (m, 4H), 4.34 (s, 2H), 4.29 (s, 2H), 2.34 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 151.4, 151.3, 138.2, 137.5, 135.1, 130.5, 130.3, 129.6, 129.3, 129.0, 127.8, 127.5, 112.2, 112.1, 47.8, 47.6, 21.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₂₇H₂₆N₂O₂SH 443.1793; Found 443.1783.

N-benzyl-4-({4-[(4-chlorolbenzyl)amino]phenyl}sulfonyl)-aniline (12d):² Following the

general procedure (**iii**), the titled compound was isolated as greenish liquid (190 mg, 0,41 mmol, 82% yield) using silica gel column chromatography (30-40% ethyl acetate in hexane). ¹H NMR

(500 MHz, CDCl₃) δ 7.64 (d, J = 8.4 Hz, 4H), 7.36-7.28 (m, 8H), 7.22 (d, J = 8.4 Hz, 1H), 6.57-6.52 (m, 4H), 4.60 (s, 2H), 4.32 (d, J = 9.5 Hz, 4H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 151.3, 151.1, 138.2, 136.8, 133.4, 129.3, 129.2, 129.0, 128.9, 128.7, 127.7, 127.4, 112.2, 112.1, 47.7, 47.0 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₃ClN₂O₂SH 463.1247; Found 463.1230.

¹H and ¹³C{¹H} NMR spectra compounds obtained *via* post-synthetic modifications

Figure S115. ¹H NMR spectrum of 10a in DMSO- d_6 . * indicates the solvent impurity of H₂O.

Figure S116. ¹³C $\{^{1}H\}$ NMR spectrum of 10a in DMSO- d_6 .

Figure S117. ¹H NMR spectrum of 10b in DMSO- d_6 . * indicates the solvent impurity of H₂O.

Figure S118. ${}^{13}C{}^{1}H$ NMR spectrum of 10b in DMSO- d_{6} .

Figure S120. ¹³C{¹H} NMR spectrum of 12a in CDCl₃.

- 2.33 4.64 4.61 4.61 4.59 4.45 4.44 4.39 4.39

Figure S121. ¹H NMR spectrum of 12b in CDCl₃.

Figure S122. ¹³C{¹H} NMR spectrum of 12b in CDCl₃.

Figure S124. ¹³C{¹H} NMR spectrum of 12c in CDCl₃.

Figure S126. ¹³C{¹H} NMR spectrum of 12d in CDCl₃.

Figure S128. ¹H NMR spectrum of the Ru-complex (**11a**) in DMSO- d_6 . * indicates the solvent impurity of H₂O.

9

2.94 4.10

> 8 f1 (ppm)

6.11-

1.00-

10

11

0.91

15

14

13

12

16

3.98

6

5

3.07H

3

4

2

6.03

1

0

Figure S129. ¹³C $\{^{1}H\}$ NMR spectrum of 11a in DMSO- d_6 .

Figure S130. ESI-Mass of Mn-complex (11b).

General procedure for control experiments:

i) Effect of catalyst loading (Scheme 1a-b): Different sets of reactions were carried out by charging oven-dried Schlenk tubes (25 mL) with different loadings of $[Co(Cp^*)Cl_2]_2$ (0.5 to 2.5 mol%), ligand L3/L1 (1 to 5 mol%), and KO'Bu (0.5 mmol, 1 equiv.) followed by toluene (1 mL). Then, the tube was kept in an oil bath at 140 °C and heated for 1 h. After cooling to room temperature, *o*-phenylene diamine (0.5 mmol) and alcohol (1.25 mmol) were added and further heated at 140 °C for 24 h. After completion of the reaction, analytically pure products were obtained *via* column chromatography and the yield of the isolated product was noted for each case.

ii) Metal hydride trapping experiment (Scheme 2f): An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (0.0075 mmol), ligand L3 (0.015 mmol), and KO'Bu (0.5 mmol). Then, the tube was kept in an oil bath at 140 °C for 1 h. After cooling to room temperature, diamine (0.5 mmol), benzyl alcohol (1.25 mmol), and trityl PF₆ (3-5 mol%) were added and further heated at 140 °C for 24 h (standard conditions for our catalytic reactions). After completion of the reaction, product **3a** was obtained after column chromatography using hexane/ethyl acetate as eluent in maximum 22% yield.

iii) Radical scavenger experiment (Scheme 2f): An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (0.0075 mmol), ligand L3/L1 (0.015 mmol), and KO'Bu (0.5 mmol). Then, the tube was kept in an oil bath at 140 °C for 1 h. After cooling to room temperature, diamine (0.5 mmol), benzyl alcohol (1.25 mmol), and TEMPO/BHT (0.5 mmol) were added and further heated at 140 °C for 24 h (standard conditions for our catalytic reactions). After completion of the reaction, analytically pure **3a/4a** was obtained in ~74-79% yield after column chromatography.

iv) Mercury dropping experiment (Scheme 2e): An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (0.0075 mmol), ligand L3 (0.015 mmol), and KO'Bu (0.5 mmol). Then, the tube was kept in an oil bath at 140 °C for 1 h. After cooling to room temperature, diamine (0.5 mmol), benzyl alcohol (1.25 mmol), and elemental mercury (1.0 mmol) were added and further heated at 140 °C for 24 h (standard conditions for our catalytic reactions). After completion of the reaction, the reaction mixture was decanted, and product **3a** obtained in 73% yield after purification *via* column chromatography.

Figure S131. ¹H NMR spectrum of a reaction mixture (~ 4 h) of diamine dialkylation catalysed by **CoL3** in CDCl₃. * peaks are for **I1**, **\$** peaks for **3a**.

Figure S132. ¹³C $\{^{1}H\}$ NMR spectrum of a reaction mixture (~ 4 h) of diamine dialkylation catalysed by CoL3 in CDCl₃. * peaks are for I1, \$ peaks for 3a.

Figure S133. ESI-MS of a reaction mixture of diamine dialkylation catalysed by CoL3.

Figure S134. ¹H NMR spectrum of a reaction mixture (~ 4 h) of diamine cyclisation catalysed by **CoL1** in CDCl₃. * peaks are for **I3**, **\$** peaks for **4a**, and # for benzaldehyde.

Figure S135. ¹³C $\{^{1}H\}$ NMR spectrum of a reaction mixture (~ 4 h) of diamine cyclisation catalysed by **CoL1** in CDCl₃. * peaks are for **I3**, **\$** peaks for **4a** and # for benzaldehyde.

Figure S136. ESI-MS of a reaction mixture a reaction mixture of diamine cyclisation catalysed by **CoL1**.

General procedure for deuterium labelling experiment

The metal precursor $[(Cp^*)CoCl_2]_2$ (1 mol%), ligand (L3) (2 mol%) and KO'Bu (0.25 mmol) were taken in a pre-dried Schlenk tube under inert atmosphere followed by the addition of toluene. The closed Schlenk tube was stirred at 140 °C for 1 h. After that, it was charged with aniline (0.25 mmol) and benzyl alcohol- d_2 (0.375 mmol) in an inert atmosphere at room temperature and again stirred at 140 °C for 20 h. The resultant solution was concentrated and purified by silica gel column chromatography and the percentage of deuterium incorporation was analysed from ¹H-NMR.

Figure S137. ¹H NMR spectrum of $9a-d_1/d_2$ in CDCl₃.

Figure S138. ¹H NMR spectrum of 9a in CDCl_{3.}

Product distribution by ¹H NMR integration

	9a	9a- d_1	9a- <i>d</i> ₂
Signal	4.33 [benzyl-H(2H)]	4.32 [benzyl-H(1H)]	-
Integral Value	0.17	0.38	-
Calculated ratio	8.5%	38%	53.5%

Compound Spectra (overlaid)

Figure S139. HRMS of deuterated product $9a-d_1/d_2$.

Figure S140. ¹H NMR spectrum of a reaction mixture for $4a-d_1/d_2$ in CDCl₃.

Figure S141. ¹H NMR spectrum of 4a in CDCl_{3.}

Product distribution by ¹H NMR integration

	4 a	$4\mathbf{a}$ - d_1	$4\mathbf{a}$ - d_2
Signal	5.48 [benzyl-H(2H)]	5.43 [benzyl-H(1H)]	-
Integral Value	0.36	0.15	-
Calculated ratio	18%	15%	67%

Figure S142. HRMS of deuterated product 4a-d2.

Figure S143. HRMS of deuterated product 4a-d₁.

In situ NMR monitoring experiment for dehydrogenation of alcohol:

An oven-dried Schlenk tube (25 mL) was charged with $[Co(Cp^*)Cl_2]_2$ (0.0075 mmol), ligand L3 (0.015 mmol), and KO'Bu (0.5 mmol) followed by toluene (1 mL). Then, the tube was kept in an oil bath at 140 °C and heated for 1 h. After cooling to room temperature, alcohol 2 (1.25 mmol) were added and further heated at 140 °C and progress of the reaction was monitored over the interval of 6 h, 12 h, and 24 h using ¹H NMR analysis.

Figure S144. ¹H NMR spectra of reaction mixture for alcohol dehydrogenation under optimized conditions of table 2 catalyzed by **CoL3** catalyst in CDCl₃.

Computational data

All the calculations were performed using the Gaussian 16, Revision B.01 program.¹⁶ All structures cationic complexes $[CoL1]^{2+}$ and $[CoL3]^{2+}$ were optimized with B3LYP¹⁷ functional. Metal (Co) was treated with LANL2DZ¹⁸ basis set with an effective core potential, while the other atoms were treated using using 6-31G**¹⁹, a double- ζ Pople type basis set.

Cartesian Coordinates of all the optimized geometries:

Cationic complex of [CoL1]²⁺

6	-2.271034529	1.648781754	0.865684946
6	-0.904766263	1.495176024	0.845874841
6	0.205527796	2.307792641	1.441693588
6	1.795392301	3.792175232	0.138823280
6	2.684965937	3.575196495	-0.862054700
6	1.797464183	1.559011718	-0.313072985
6	3.428938417	1.601057475	-2.214763561
6	1.160417247	-1.973728182	1.306489547
6	0.966224125	-2.438180799	-0.063700221
6	2.155428763	-2.165636730	-0.797009587
6	3.016196684	-1.405897149	0.057138691
6	2.410996969	-1.340598042	1.385128895
6	0.169437751	-2.174021030	2.414970979
6	-0.202719867	-3.255053218	-0.535213447
6	2.439783444	-2.587127663	-2.211617878
6	4.438576942	-1.013419454	-0.223374712

6	3.075347222	-0.759534773	2.600063189
27	1.192168427	-0.303020304	-0.155068557
7	-2.752267250	0.583987772	0.164375180
7	-1.754742227	-0.193988897	-0.277552782
7	-0.640095478	0.359070778	0.136416583
7	1.261123821	2.551666612	0.455756074
7	2.667144655	2.212308126	-1.128287325
1	-0.283217880	-3.250968636	-1.625225032
1	-0.097264868	-4.300468914	-0.218536116
1	-1.148106759	-2.881587856	-0.134622956
1	-0.857312277	-2.011569504	2.073337576
1	0.219999904	-3.201774927	2.794982697
1	0.357510759	-1.505915226	3.259427487
1	2.356956435	-0.553887974	3.398207062
1	3.820711221	-1.453116836	3.009658545
1	3.599258115	0.173830392	2.371767091
1	4.683630459	-0.029679522	0.188163486
1	5.123003599	-1.734192020	0.241295118
1	4.664068015	-1.004081370	-1.291821584
1	1.536364593	-2.586804055	-2.827956319
1	3.172802865	-1.936316684	-2.696551045
1	2.849180618	-3.604580374	-2.237998432
1	-0.172803554	3.271242464	1.787862045

1	0.634706295	1.785879212	2.304181938
1	3.313849028	4.261834038	-1.406600786
1	1.505710535	4.700830218	0.642817857
1	-2.911392119	2.410055483	1.280855947
1	3.210697147	2.118536176	-3.152028144
1	4.500706516	1.657803782	-2.010698987
1	3.127907991	0.559244095	-2.300933334
6	-5.104465789	0.531934569	0.816744554
1	-4.842964163	0.949350509	1.783834048
6	-6.431581654	0.228640027	0.514921276
1	-7.206180781	0.434665750	1.246287612
6	-6.758694688	-0.351837326	-0.712125117
1	-7.792542723	-0.590287357	-0.939932562
6	-5.756418796	-0.629200729	-1.644870637
1	-6.009284187	-1.079208627	-2.599355637
6	-4.426594237	-0.320148309	-1.364669267
1	-3.639939077	-0.517028166	-2.083584135
6	-4.117213256	0.259356360	-0.1325510916

Cationic complex of [CoL3]²⁺

6	-6.287962896	-0.115246316	-0.551296271
6	-5.478785476	0.693614825	-1.358219623
6	-4.131860713	0.921005358	-1.065669045
6	-3.611272746	0.302001756	0.081939828
6	-4.375413552	-0.526405768	0.918342977
6	-5.716924869	-0.716960908	0.575930742
6	-3.785105022	-1.199752956	2.134557869
6	-7.747135134	-0.316371704	-0.878825470
6	-3.278637134	1.787452260	-1.960484394
6	-1.707281690	1.403456420	1.315392795
6	-0.343945176	1.244863596	1.229601918
6	0.795604547	1.894062209	1.955980170
6	2.346615539	3.638203164	0.963033334
6	3.191235706	3.656755367	-0.098414708
6	2.311499496	1.566788375	0.015128069
6	3.859374864	2.044971278	-1.897127193
6	1.741443807	-2.239021226	0.832544797
6	1.466826909	-2.389529745	-0.593208273
6	2.615420437	-1.955975090	-1.313943267
6	3.528406510	-1.399911842	-0.363236043
6	2.998733628	-1.632320743	0.978400531
6	0.814906198	-2.686916850	1.924020732
6	0.266734947	-3.087073282	-1.166905908

6	2.816441951	-2.051025568	-2.800658911
6	4.936941459	-0.951223072	-0.629243566
6	3.733881427	-1.328665841	2.252145378
27	1.702109184	-0.285621685	-0.224173044
7	-2.221505618	0.525183222	0.411825062
7	-1.246917958	-0.147543268	-0.215852229
7	-0.114417490	0.287786168	0.282075974
7	1.816558602	2.357220717	1.012084684
7	3.151020892	2.390378096	-0.667063256
1	-3.886503395	2.247027535	-2.742256365
1	-2.789458531	2.593015199	-1.401310474
1	-2.489783539	1.203042628	-2.445920746
1	-7.922456637	-0.288644275	-1.957739816
1	-8.115715608	-1.271717474	-0.496061953
1	-8.358640933	0.474891207	-0.428440378
1	-3.523213630	-0.477714348	2.916741154
1	-4.499083804	-1.903809506	2.566290054
1	-2.874710917	-1.755400905	1.886105934
1	-6.328988103	-1.358423954	1.204229827
1	-5.905681177	1.159538861	-2.242319069
1	0.128997870	-2.847951821	-2.224350951
1	0.377675812	-4.176078182	-1.088577890
1	-0.653079292	-2.808953326	-0.647073622

1	-0.228565462	-2.458583106	1.686191807
1	0.879811084	-3.773101224	2.062964093
1	1.055054274	-2.221371794	2.883387323
1	3.062551568	-1.305707338	3.114863740
1	4.495612545	-2.091500558	2.457728918
1	4.251233331	-0.365394852	2.204670246
1	5.214225850	-0.082611093	-0.024413161
1	5.638935044	-1.755276257	-0.375023568
1	5.103056950	-0.704687261	-1.680041979
1	1.878874806	-1.922985974	-3.348846641
1	3.521969868	-1.301467236	-3.170156772
1	3.220620660	-3.033194958	-3.075517914
1	0.441774113	2.752149101	2.530093865
1	1.251934008	1.185728097	2.656152210
1	3.802379680	4.450379092	-0.498616542
1	2.086089149	4.407406391	1.672995164
1	-2.333521022	2.043204186	1.917049113
1	3.609459282	2.766356981	-2.678829614
1	4.939376654	2.049252830	-1.732462023
1	3.541194422	1.052552228	-2.209042171

Reference

- 1. M. Siddique, B. Boity and A. Rit, Organometallics, 2023, 42, 1395-1403.
- 2. S. N. R. Donthireddy, M. Siddique and A. Rit, J. Org. Chem., 2023, 88, 1135-1146.
- 3. H. -Y. Kuo, B. -S. Liao and S. -T. Liu, Synthesis, 2013, 45, 0189-0192.

4. A. Bera, M. Sk, K. Singh and D. Banerjee, Chem. Commun., 2019, 55, 5958-5961.

5. K. Das, A. Mondal and D. Srimani, J. Org. Chem., 2018, 83, 9553-9560.

6. R. Varala, A. Nasreen, R. Enugala and S. R. Adapa, Tet. Lett., 2007, 48, 69-72.

7. N. E. A. Ravindran, M. Yadav, M. M. Tamizh, N. Bhuvanesh, S. Sarkar and R. Karvembu, *Asian J. Org. Chem.*, 2023, **12**, e202200675.

8. A. Li, C. Li, T. Yang, Z. Yang, Y. Liu, L. Li, K. Tang and C. Zhou, *J. Org. Chem.*, 2023, **88**, 1928-1935.

9. P. E. Morea, N. B. Bankara, S. G. Gaikwada, N. S. Shindea and B. P. More, *Russian Journal* of Organic Chemistry, 2023, **59**, 3, 521-527.

10. P. Anandaraj, R. Ramesha and J. G. Malecki, *J. Organomet. Chem.*, 2023, **985**, 122577-122588.

11. Y. Chen, X. Sun, Y. Sha, X. Fang, W. Chu and X. Wang, *Molecular Catalysis*, 2023, **543**, 113186-113197.

12. S. Das, S. Mallick and S. D. Sarkar, J. Org. Chem., 2019, 84, 18, 12111-12119.

13. S. N. R. Donthireddy, P. M. Illam and A. Rit, Inorg. Chem., 2020, 59, 1835-1847.

14. A. -M. Macsim, E. Georgescu, F. Georgescu, P. Filip, A. Nicolescu and C. Deleanu, *Monatshefte für Chemie - Chemical Monthly*, 2021, **152**, 845-852.

15. S. D. Düşünceli, D. Ayaz, E. Üstün, S. Günal, N. Özdemir, M. Dinçer and İ. Özdemir, *J. of Coord. Chem.*, 2020, **73**, 1967-1986.

Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. Martin, L. K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

17. a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789; c) A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377.
18. a) T. H. Dunning Jr. and P. J. Hay, Ed. H. F. Schaefer III, *Modern Theoretical Chemistry*, 1977, **3**, 1-28; b) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 270-283; c) W. R. Wadt and P. J. Hay, *J. Chem. Phys.*, 1985, **82**, 284-298; d) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 299-310.

19. a) G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, *J. Chem. Phys.* 1988, **89**, 2193-2218; b) G. A. Petersson, M. A. Al-Laham, *J. Chem. Phys.* 1991, **94**, 6081-6090.