Electronic Supplementary Information

InNi $_{3} \mathrm{C}_{0.5} @$ C-derived InNi_{3} alloy as a coke-resistant low-temperature catalyst for selective butadiene hydrogenation

Zhibing Chen, ${ }^{+}{ }^{\mathrm{a}}$ Yali Lv, ${ }^{+\mathrm{a}, \mathrm{b}}$ Xintai Chen, ${ }^{a}$ Xiaoling Mou, ${ }^{\text {a,c }}$ Jingwei Li, ${ }^{* b}$ Li Yan, ${ }^{\mathrm{b}}$ Ronghe Lin, *a,c and Yunjie Ding*a,b,d
${ }^{\text {a }}$ Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 116023, PR China. xiaoling.mou@zjnu.edu.cn, catalysis.lin@zjnu.edu.cn.
${ }^{\text {b }}$ Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. dyj@dicp.ac.cn.
${ }^{\text {c Key }}$ Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
${ }^{\mathrm{d}}$ The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.

[^0]

Fig. S1. The PXRD patterns of the as-prepared $\mathrm{InNi}_{3} \mathrm{C}_{0.5} @ \mathbf{C}$.

Fig. S2. The N_{2} sorption isotherms of pristine $\mathrm{InNi}_{3} \mathrm{C}_{0.5} @ \mathrm{C}$ and A 1023 .

Fig. S3. The STEM images H1023, showing the reduced carbon shells after hydrogenation treatment at 1023 K .

Fig. S4. The full XPS spectra of $\operatorname{InNi}_{3} \mathrm{C}_{0.5} @ \mathrm{C}$ and A1023 (oxidized at 1023 K), accompanied with the elemental distribution.

Fig. S5. The Ni $2 p$ and In $3 d$ XPS spectra of $\mathrm{InNi}_{3} \mathrm{C}_{0.5} @ \mathrm{C}$ and A1023 (oxidized at 1023 K).

Fig. S6. The mass signals $(\mathrm{m} / \mathrm{z}=2)$ during the $\mathrm{H}_{2}-\mathrm{TPD}$ experiments on $\mathrm{InNi}_{3} \mathrm{C}_{0.5} @ \mathrm{C}$ and A1023.

Fig. S7. The stability performance of A1023 in BD hydrogenation. Reaction conditions: 0.69 vol. $\% \mathrm{BD}$ balanced in $\mathrm{N}_{2}, \mathrm{H}_{2}: \mathrm{BD}=50, G H S V=300,000 \mathrm{~cm}^{3} \mathrm{~g}_{\mathrm{cat}^{-1}} \mathrm{~h}^{-1}, T=353 \mathrm{~K}$.

Fig. S8. The a, BD conversion and, \mathbf{b}, product selectivity as a function of temperature in BD hydrogenation on A1023. Reaction conditions: 0.69 vol. $\% \mathrm{BD}$ balanced in $\mathrm{N}_{2}, \mathrm{H}_{2}: \mathrm{BD}=50$, $G H S V=300,000-900,000 \mathrm{~cm}^{3} \mathrm{~g}_{\mathrm{cat}^{-1}} \mathrm{~h}^{-1}$.

Fig. S9. The TEM images at different magnifications of A1023 after the 24 h evaluation in BD hydrogenation. The distinct (101) and (201) facets of InNi_{3} alloy were evidenced from the high-resolution TEM images.

Fig. S10. Characterization of A1023 after the 36 h evaluation in BD hydrogenation at 318 K :
a, PXRD; b, TGA; c, Raman spectra.

[^0]: + Equal contribution.
 *Corresponding authors. E-mails: xiaoling.mou@zjnu.edu.cn, lijw@dicp.ac.cn, catalysis.lin@zjnu.edu.cn,dyj@dicp.ac.cn.

