Electronic Supplementary Information

InNi $_{3}C_{0.5}$ (a)C-derived InNi $_{3}$ alloy as a coke-resistant low-temperature catalyst for selective butadiene hydrogenation

Zhibing Chen,⁺ ^a Yali Lv,^{+a,b} Xintai Chen,^a Xiaoling Mou,^{*a,c} Jingwei Li,^{*b} Li Yan,^b Ronghe Lin, ^{*a,c} and Yunjie Ding^{*a,b,d}

^aHangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 116023, PR China. xiaoling.mou@zjnu.edu.cn, catalysis.lin@zjnu.edu.cn.

^bDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. dyj@dicp.ac.cn.

^cKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.

^dThe State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.

⁺ Equal contribution.

*Corresponding authors. E-mails: xiaoling.mou@zjnu.edu.cn, lijw@dicp.ac.cn, catalysis.lin@zjnu.edu.cn, dyj@dicp.ac.cn.

Fig. S1. The PXRD patterns of the as-prepared $InNi_3C_{0.5}@C$.

Fig. S2. The N_2 sorption isotherms of pristine In $Ni_3C_{0.5}$ @C and A1023.

Fig. S3. The STEM images H1023, showing the reduced carbon shells after hydrogenation treatment at 1023 K.

Fig. S4. The full XPS spectra of $InNi_3C_{0.5}@C$ and A1023 (oxidized at 1023 K), accompanied with the elemental distribution.

Fig. S5. The Ni 2p and In 3d XPS spectra of InNi₃C_{0.5}@C and A1023 (oxidized at 1023 K).

Fig. S6. The mass signals (m/z = 2) during the H₂-TPD experiments on $InNi_3C_{0.5}@C$ and A1023.

Fig. S7. The stability performance of A1023 in BD hydrogenation. Reaction conditions: 0.69 vol.% BD balanced in N₂, H₂:BD = 50, *GHSV* = 300,000 cm³ g_{cat}⁻¹ h⁻¹, *T* = 353 K.

Fig. S8. The **a**, BD conversion and, **b**, product selectivity as a function of temperature in BD hydrogenation on A1023. Reaction conditions: 0.69 vol.% BD balanced in N₂, H₂:BD = 50, $GHSV = 300,000-900,000 \text{ cm}^3 \text{ g}_{cat}^{-1} \text{ h}^{-1}$.

Fig. S9. The TEM images at different magnifications of A1023 after the 24 h evaluation in BD hydrogenation. The distinct (101) and (201) facets of $InNi_3$ alloy were evidenced from the high-resolution TEM images.

Fig. S10. Characterization of A1023 after the 36 h evaluation in BD hydrogenation at 318 K:a, PXRD; b, TGA; c, Raman spectra.